Beyond the Standard Model

Why is BSM physics interesting?

Why is BSM physics interesting?

British Prime Minister:

<But Mr. Faraday, what's the use of this?>

Faraday:

<I don't know yet, but I am sure you will tax it!>

- British Prime Minister:
- <But Mr. Faraday, what's the use of this?> Faraday:
- <I don't know yet, but I am sure you will tax it!>
- Talking about the **first electric motor**...

- British Prime Minister:
- <But Mr. Faraday, what's the use of this?> Faraday:
- <I don't know yet, but I am sure you will tax it!>
- Talking about the **first electric motor**...
- **Electric motors** consumes the **50%** of the world electricity
- They are used in all modern machineries (industry, transportation, household, agriculture, medical devices, construction...)

- British Prime Minister:
- <But Mr. Faraday, what's the use of this?> Faraday:
- <I don't know yet, but I am sure you will tax it!>
- Talking about the **first electric motor**...
- Now:
- **Electric motors** consumes the **50%** of the world electricity
- They are used in all modern machineries (industry, transportation, household, agriculture, medical devices, construction...)

A modern example: the Positronium

If an electron (e^-) meets a positron (e^+) they can form **Positronium**

Two kinds of Positronium:

•Para-positronium: anti-parallel spin

A modern example: the Positronium

If an electron (e^-) meets a positron (e^+) they can form **Positronium**

Two kinds of Positronium:

•Para-positronium: anti-parallel spin

1 eV := energy acquired by electron in 1 V potential

$$E = qV = 1.6 \cdot 10^{-19} \text{C} \times 1\text{V} = 1.6 \cdot 10^{-19} \text{C} \times \frac{\text{J}}{\text{C}} = 1$$

Elena Pompa Pacchi | BSM Physics | 08/21/2024

Т

A modern example: the Positronium

If an electron (e^-) meets a positron (e^+) they can form **Positronium**

Two kinds of Positronium:

• Para-positronium: anti-parallel spin

1 eV := energy acquired by electron in 1 V potential

A radioactive source of e^+ is injected in the patient

Different radioactive source bonds with different parts of the body (e.g. tumours, bones, blood)

A radioactive source of e^+ is injected in the patient

Different radioactive source bonds with different parts of the body (e.g. tumours, bones, blood)

Different radioactive source bonds with different parts of the body (e.g. tumours, bones, blood)

The 3D position of the target is reconstructed from the two γ coming from Para-positronium

Different radioactive source bonds with different parts of the body (e.g. tumours, bones, blood)

The 3D position of the target is reconstructed from the two γ coming from Para-positronium

Radioactive

tracer

Gamma ray

Positron

γ photon

(511 keV)

detectors

Different radioactive source bonds with different parts of the body (e.g. tumours, bones, blood)

The 3D position of the target is reconstructed from the two γ coming from Para-positronium

A radioactive source of e^+ is injected in the patient

> e^+ annihilates with $e^$ naturally present in the body, producing a γ pair

> > New PET scans could use Positronium, more information as Positronium production rate depends on environment!

Do we need to go Beyond the Standard Model?

Plato's allegory of the cave

Plato's allegory of the cave

리리리리리리리리리리리리리리리리

<u>sessessessessessessessesses</u>

- Our experience of reality is tied to what we can access and how we perceive it
 - \rightarrow our description of reality is limited by definition

9999999999999999999999999

Missing piece #1: Gravity

Weak force:

 β^{\pm} decays

Electromagnetic force: Binding atoms together

Strong force: Binding nuclei together

Gravitational force:

Missing piece #1: Gravity

Included in the SM Lagrangian!

Strong force: Binding nuclei together Neutron Proton

Gravitational force: Binding solar system to:

Missing piece #1: Gravity

Included in the SM Lagrangian!

Strong force: Binding nuclei together Neutron Proton

Gravitational force:

Binding solar system together

SM does not include gravity!

Missing piece #2: Dark matter

Evidence of additional non-luminous mass in the Universe from gravitational effects at different scales

Observed vs. Predicted Keplerian

$$v_{r>R_D} \propto \frac{M}{r^{1/2}}$$

 \rightarrow should decrease with *r* but it flattens out \rightarrow additional mass in the galaxy!

Missing piece #2: Dark matter

Evidence of additional non-luminous mass in the Universe from gravitational effects at different scales

Observed vs. Predicted Keplerian

Galaxy speed outside galactic disk:

Massive objects deform spacetime \rightarrow star "behind" massive objects can appear multiple times/distorted

 $v_{r>R_D} \propto \frac{M}{r^{1/2}}$

 \rightarrow should decrease with *r* but it flattens out \rightarrow additional mass in the galaxy!

Missing piece #2: Dark matter

Evidence of additional non-luminous mass in the Universe from gravitational effects at different scales

Observed vs. Predicted Keplerian

Galaxy speed outside galactic disk:

Massive objects deform spacetime \rightarrow star "behind" massive objects can appear multiple times/distorted

 $v_{r>R_D} \propto \frac{M}{r^{1/2}}$

 \rightarrow should decrease with *r* but it flattens out \rightarrow additional mass in the galaxy!

Evidence of additional non-luminous mass in the Universe from gravitational effects at different scales

Observed vs. Predicted Keplerian

Galaxy speed outside galactic disk:

times/distorted

 $V_{r>R_D}$

 \rightarrow should decrease with *r* but it flattens out \rightarrow additional mass in the galaxy!

Missing piece #2: Dark matter

Massive objects deform spacetime \rightarrow star "behind" massive objects can appear multiple

Lensing measurement \rightarrow additional mass in the cluster of galaxy

Evidence of additional non-luminous mass in the Universe from gravitational effects at

Observed vs. Predicted Keplerian

Galaxy speed outside galactic disk:

Massive objects deform spacetime \rightarrow star "behind" massive objects can appear multiple times/distorted

 $V_{r>R_D}$

 \rightarrow should decrease with r but it flattens out \rightarrow additional mass in the galaxy!

Lensing measurement \rightarrow additional mass in the cluster of galaxy

Missing piece #3: Matter-antimatter asymmetry

Anti-matter is twin of matter:

Same spin, mass but opposite charge

Missing piece #3: Matter-antimatter asymmetry

Anti-matter is twin of matter:

Same spin, mass but opposite charge

In interaction between particle and its antiparticle the annihilate, releasing energy!

Missing piece #3: Matter-antimatter asymmetry

Anti-matter is twin of matter:

Same spin, mass but opposite charge

In interaction between particle and its antiparticle the annihilate, releasing energy!

Our existence poses a question: where is antimatter?

Anti-matter is twin of matter:

Same spin, mass but opposite charge

In interaction between particle and its antiparticle the annihilate, releasing energy!

Missing piece #4: Neutrino mass puzzle

particles Right-handed: they so light?

All particles (ψ) acquire their mass through interaction with Higgs field (ϕ)

The mass term is composed of Lefthanded and Right-handed chiral

For very energetic particles this means:

Left-handed:

Right-handed neutrinos don't exist, but they are massive \rightarrow how do they acquire their mass? Why are

Missing piece #4: Neutrino mass puzzle

particles Right-handed: they so light?

All particles (ψ) acquire their mass through interaction with Higgs field (ϕ)

The mass term is composed of Lefthanded and Right-handed chiral

For very energetic particles this means:

Left-handed:

Right-handed neutrinos don't exist, but they are massive \rightarrow how do they acquire their mass? Why are

Higgs boson mass much smaller than gravity energy scale (10^{17} , one hundred billiard, times smaller) \rightarrow hierarchy problem

Higgs mass extremely small \rightarrow some specific mathematics (cancellations) happening \rightarrow fine-tuning or naturalness problem

Higgs boson mass much smaller than gravity energy scale (10^{17} , one hundred billiard, times smaller) \rightarrow hierarchy problem

Higgs mass extremely small \rightarrow some specific mathematics (cancellations) happening \rightarrow fine-tuning or naturalness problem

Higgs potential has a minimum determining mass of known particles:

Higgs boson mass much smaller than gravity energy scale (10^{17} , one hundred billiard, times smaller) \rightarrow hierarchy problem

Higgs mass extremely small \rightarrow some specific mathematics (cancellations) happening \rightarrow fine-tuning or naturalness problem

Higgs potential has a minimum determining mass of known particles:

What if at higher energies the Higgs has a new and smaller minimum?

Higgs boson mass much smaller than gravity energy scale (10^{17} , one hundred billiard, times smaller) \rightarrow hierarchy problem

Higgs mass extremely small \rightarrow some specific mathematics (cancellations) happening \rightarrow fine-tuning or naturalness problem

Higgs potential has a minimum determining mass of known particles:

What if at higher energies the Higgs has a new and smaller minimum?

The Higgs potential would be meta-stable, a new minimum will be reached and Universe as we know it would change! \rightarrow Higgs potential stability problem

The naturalness/hierarchy/potential stability pr

Higgs boson mass much smaller than gravity energy scale (10^{17} , one hundred billiard, times smaller) \rightarrow hierarchy problem

Higgs mass extremely small \rightarrow some specific mathematics (cancellations) happening \rightarrow fine-tuning or naturalness problem

Higgs potential has a minimum determining mass of known particles:

The Higgs potential would be meta-stable, a new minimum will be reached and Universe as we know it would change! \rightarrow Higgs potential stability problem

Charge transformation:

Charge transformation:

Charge transformation:

If CP symmetry is preserved the process is identical under CP transformation

Charge transformation:

- Example of CP symmetry into action:
- Meson decays (integer spin hadrons)

If CP symmetry is preserved the process is identical under CP transformation

Charge transformation:

- Example of CP symmetry into action:
- Meson decays (integer spin hadrons)

SM predicts weak force to be CP violating, in strong force this is expected too \rightarrow no CP violation observed in strong force!

m counterclockwise meson clockwise meson decays, emits electron north decays, emits electron north CP С m m counterclockwise anti-meson clockwise anti-meson decays, emits positron north decays, emits positron north

If CP symmetry is preserved the process is identical under CP transformation

Charge transformation:

- Example of CP symmetry into action:
- Meson decays (integer spin hadrons)

SM predicts weak force to be CP violating, in strong force this is expected too \rightarrow no CP violation observed in strong force!

If CP symmetry is preserved the process is identical under CP transformation

How to search for physics Beyond the Standard Model?

Precision measurements

Precision measurements are one of the way to tackle BSM physics.

Idea: measure quantity predicted by the SM \rightarrow if notcompatible with SM new Physics!

Ingredients:

1 cup of precision in the measurement

1 cup of precision in the prediction

Notes :

Best results obtained via collaboration of theorists and experimentalists

Precision measurements (and not only!)

Procedure:

- 1.Perform theoretical calculation with smallest possible uncertainty
- 2.Perform measurement with smallest possible uncertainty

Precision measurements

Precision measurements are one of the way to tackle BSM physics.

Idea: measure quantity predicted by the SM \rightarrow if notcompatible with SM new Physics!

Ingredients:

1 cup of precision in the measurement

1 cup of precision in the prediction

Notes :

Best results obtained via collaboration of theorists and experimentalists

Precision measurements (and not only!)

Procedure:

- 1.Perform theoretical calculation with smallest possible uncertainty
- 2.Perform measurement with smallest possible uncertainty

[dd](X+H∗

o(pp-

- An example:
- The measurement of the Higgs boson production cross section

Heisenberg uncertainty principle:

impossible to know with infinite precision at the same time certain pairs of variables

Heisenberg uncertainty principle: impossible to know with infinite precision at the same time certain pairs of variables

Position-momentum relation: $\Delta p \Delta x \sim \frac{\hbar}{2}$

Energy-time relation: $\Delta t \Delta E \sim \frac{\hbar}{2} \rightarrow \Delta E \sim \frac{\hbar}{2\Delta t}$

Heisenberg uncertainty principle: impossible to know with infinite precision at the same time certain pairs of variables

Position-momentum relation: $\Delta p \Delta x \sim \frac{\hbar}{2}$

Energy-time relation:

$$\Delta t \Delta E \sim \frac{n}{2} \rightarrow \Delta E \sim \frac{n}{2\Delta t}$$

 $E = mc^2$ (energy and mass are equivalent)

ち

 \Rightarrow The more "prompt" is a particle, the broader its mass distribution!

Heisenberg uncertainty principle: impossible to know with infinite precision at the same time certain pairs of variables

Position-momentum relation: $\Delta p \Delta x \sim \frac{\hbar}{2}$

Energy-time relation: $\Delta t \Delta E \sim \frac{\hbar}{2} \rightarrow \Delta E \sim \frac{\hbar}{2\Delta t}$

 $E = mc^2$ (energy and mass are equivalent)

 \Rightarrow The more "prompt" is a particle, the broader its mass distribution!

 $\Rightarrow \Gamma = \frac{\hbar}{\tau} \text{ decay width (broadness) of a}$ particle is related to its mean proper life time

Heisenberg uncertainty principle: impossible to know with infinite precision at the same time certain pairs of variables Position-momentum relation: $\Delta p \Delta x \sim \frac{\hbar}{2}$ Energy-time relation: $\Delta t \Delta E \sim \frac{\hbar}{2} \rightarrow \Delta E \sim \frac{\hbar}{2\Delta t}$

 $\sum E = mc^2$ (energy and mass are equivalent)

 \Rightarrow The more "prompt" is a particle, the broader its mass distribution!

 $\Rightarrow \Gamma = \frac{\hbar}{\tau}$ decay width (broadness) of a particle is related to its mean proper life time

Heisenberg uncertainty principle: impossible to know with infinite precision at the same time certain pairs of variables

Position-momentum relation: $\Delta p \Delta x \sim \frac{n}{2}$

Energy-time relation:

$$\Delta t \Delta E \sim \frac{n}{2} \rightarrow \Delta E \sim \frac{n}{2\Delta t}$$

 $E = mc^2$ (energy and mass are equivalent)

 \Rightarrow The more "prompt" is a particle, the broader its mass distribution!

 $\Rightarrow \Gamma = -\frac{n}{-}$ decay width (broadness) of a particle is related to its mean proper life time

- Higgs boson can be studied: @4 MeV energy resolution ~ O(GeV)
- \rightarrow direct measurement are impossible! Work arounds needed!!

Heisenberg uncertainty principle: impossible to know with infinite precision at the same time certain pairs of variables

Position-momentum relation: $\Delta p \Delta x \sim \frac{n}{2}$

Energy-time relation:

$$\Delta t \Delta E \sim \frac{n}{2} \rightarrow \Delta E \sim \frac{n}{2\Delta t}$$

 $E = mc^2$ (energy and mass are equivalent)

 \Rightarrow The more "prompt" is a particle, the broader its mass distribution!

 $\Rightarrow \Gamma = \frac{\hbar}{\tau} \text{ decay width (broadness) of a}$ particle is related to its mean proper life time In ATLAS and CMS, where Higgs boson can be studied: @4 MeV energy resolution ~ O(GeV)

P(m 0.03

 Particle
 τ [s]
 Γ [MeV]

 Z
 10^{-25}
 2500

 H
 10^{-22}
 4

0.025 0.02 0.015 Γ_H^{SM}

0.005

 \rightarrow direct measurement are impossible! Work arounds needed!!

• $\Gamma_H^{\rm obs} > \Gamma_H^{\rm SM} \to {\rm Higgs \ boson}$ decays into BSM states \rightarrow DM?

m_HSM=125 GeV

• $\Gamma_H^{\text{obs}} < \Gamma_H^{\text{SM}}$ \rightarrow multiple Higgs boson exist \rightarrow naturalness problem?

Finding Looking for a needle in a haystack!

e.g. @ LHC:

 $\sim 10^{10}$ collisions produced per run (~6h) to look at!

Finding Looking for a needle in a haystack!

e.g. @ LHC:

 $\sim 10^{10}\, {\rm collisions}$ produced per run (~6h) to look at!

How?

- Understanding how events of new Physics would look like → signature
- 2. Identifying standard "background" event looking the same as new Physics ones
- 3. Reduce background events

Finding Looking for a needle in a haystack!

e.g. @ LHC:

 $\sim 10^{10}$ collisions produced per run (~6h) to look at!

How?

- 1. Understanding how events of new Physics would look like \rightarrow signature
- 2. Identifying standard "background" event looking the same as new Physics ones
- 3. Reduce background events

4. Measure number of events with that signature

5. Predict number of standard events with that signature

6. Ask yourself:

Number measured events >> number standard events? New Physics?

Finding Looking for a needle in a haystack!

e.g. @ LHC:

 $\sim 10^{10}$ collisions produced per run (~6h) to look at!

How?

- 1. Understanding how events of new Physics would look like \rightarrow signature
- 2. Identifying standard "background" event looking the same as new Physics ones
- 3. Reduce background events

DON'T STOP ME NOW!

4. Measure number of events with that signature

5. Predict number of standard events with that signature

6. Ask yourself:

Number measured events >> number standard events? New Physics?

From gravitational effects

- \rightarrow DM can be a particle with:
- Lifetime ~ Universe age
- Neutral under all SM forces
- Very small self-interaction
- Can be observed via:
- Scattering
- Production
- Annihilation

From gravitational effects

- \rightarrow DM can be a particle with:
- Lifetime ~ Universe age
- Neutral under all SM forces
- Very small self-interaction
- Can be observed via:
- Scattering
- Production
- Annihilation

Scattering

From gravitational effects

- \rightarrow DM can be a particle with:
- Lifetime ~ Universe age
- Neutral under all SM forces
- Very small self-interaction
- Can be observed via:
- Scattering
- Production
- Annihilation

- \rightarrow DM can be a particle with:
- Lifetime ~ Universe age
- Neutral under all SM forces
- Very small self-interaction
- Can be observed via:
- Scattering
- Production
- Annihilation

Annihilation

New Physics searches: Dark Sectors

Dark matter is one of the many particles present in so-called Dark Sector

Portal particles have very wide range of masses and lifetimes \Rightarrow very different signatures in the detector!

New Physics searches: SUSY

From Higgs naturalness and hierarchy problem

 \rightarrow SUperSYmmetry!

Each particle has its own s-particle, completely equivalent but opposite under SUperSYmmetry.

Very wide range of masses and lifetimes \Rightarrow very different signatures in the detector!

The ATLAS detector

New Physics at LHC

New Physics events may have very different signatures in the detector wrt standard events!

Long-Lived signatures:

Particles "appears" at a certain point in the detector (here displaced jets)

> Missing energy signatures: Very long-lived or non-

interactive BSM Particles are not detected \rightarrow apparent missing energy!

 $E_{-}^{miss} = 1.9 \text{ TeV}$ 39368):36:30 CEST jet $p_{\tau} = 1.9$ TeV

Machine Learning for new Physics: Anomaly detection

Is one model more motivated than the other? Can we do better? Yes, with Machine Learning!

We are run in the third successful data-taking of LHC

Soon we will have a new run with improved detector and much more data to be analysed for many years

Probably new accelerator (FCC) will grant unprecedented energies!

A lot of things yet to be understood

The future

