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* Setting the stage: Artefact/forgery detection
using ML

* Generative neural networks for image
generation

* Adversarial learning
* Quantum field configurations vs artwork
* Monte-Carlo algorithms and their challenges

* Using neural networks to accelerate Monte-
Carlo (hormalizing flow)

Talk outline




e Global art market worth ~ $60 billion

* Authenticity/value of assets established by
expert opinions

* Selling artwork forgeries is a lucrative
criminal activity

Forgeries and art market



Amede-No! Modigliani Show Shut Down
After 21 Works Deemed Likely Fakes

The exhibition, at the Doge’s Palace in Genoa, included pieces on loan from private collections and
major institutions like the Musée de I'Orangerie and the Fitzwilliam Museum.

Forgeries and art market

* Wolfgang Beltracchi forged many artworks by
famous authors

In 2006, Beltracchi’s fake “La Horde” (assumed
author Max Ernst) sold at Christie’s for £3,000,000

In 1920s, Otto Wacker sold >30 fake Van Gogh
paintings, of which many were included in
catalogues

John Myatt, British author of “genuine forgeries”

Many forgeries are not discovered yet ...



Art classification and machine learning

* Human expert opinions often contradict each other
* Machine learning methods: more objective decisions?
* Most studies to date concentrate on artwork attribution

* Style extraction and attribution algorithms:
* fractal analysis
* wavelets

sparse coding

clustering-based segmentation

tight frame method

Convolutional neural networks (CNNs)

Visual transformer NNs



Challenges of art authentication

* CNNs: supervised learning, trained on labelled datasets

* Default option: Van Gogh vs everything not Van Gogh - not very
useful (all forgeries are still Van Gogh)

* Better: Binary classification, Van Gogh vs all known forgeries of
Van Gogh

* Challenge: 900 paintings + >1000 sketches/drawings by real Van
Gogh, <50 known forgeries (30 by Wacker)

* Huge imbalance in True/False datasets, typical for most well-
known artists

Image by wirestoc




Art forgeries and Generative Al

* Modern GenAl able to learn any artist’s style nowadays
* GenAl can create advanced art forgeries

* Artefacts quite different from human ones (evidenced by Fourier analysis
etc), can be removed once known

* Considered a threat to art/creativity market and artists’ jobs
* Let’s turn things around and use GenAl to protect art market!

> ‘“) '
MIT ¢

Technology Featured Topics Newsletters Events Podcasts SIGN IN SUBSCRIBE

: RN
Review Billie Eilish, Nicki Minaj, Stevie Wonder
and more musicians demand protection

Artists can now opt out of the next version of [EEIUSIEN
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Generative Al and art authentication

Work with Art Recognition AG (Carina Popovici, Eric Postma, Ludovica
Schaerf) and Johann Ostmeyer (Bonn):

e use GenAl to create more balanced datasets for art authentication

* [|’llcovertechnical solutions behind this work before moving to
quantum physics
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Dataset composition

* Labelled data/supervised learning:
* 126 original Van Gogh paintings (RGB) => Ground truth

* 212 stylistically similar images (other impressionist/expressionist artists,
van Gogh followers) => Contrast set (mostly for pre-training)

* 11 Wacker forgeries => Contrast set
* 8 “genuine forgeries” by John Myatt => Contrast set

* Authenticity analysis mainly based on small-scale details

* Use patches of original images

* 21, 5, or 1 adjacent non-overlapping patches. 7

* Bi-cubic resampling to 224 x 224 or 256 x 256 (classifier inp ! @

* Split patches into training (72%), validation (11%), i
and test (17%) sets

* 10 random splits, bootstrapped cross-validation
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Generative adversarial networks (GANSs)

[Goodfellow and collaborators’2014]

Zero-sum game: generator vs. discriminator (win of one is the loss of another)
Discriminator D(x): image (x) -> [0 ... 1] (authentic/not authentic)
Generator G(z): latent space (z) -> image G(z)

Cost function:

Cost(D, G) = (log (D(x)))data + (log (1 — D (G(2)))) generator

QD ECHNICA s e e s o

ﬁé_i}'\rﬁ(_}o-playing trick defeats world-class Go
Al—but loses to human amateurs

Adversarial policy attacks blind spots in the Al—with broader implications than games.
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StyleGAN

* Mapping network: Latent space ->

i o latent code
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From [Alias-Free Generative Adversarial
Networks,

Tero Karras, Miika Aittala, Samuli Laine, Erik
Harkonen, Janne Hellsten, Jaakko Lehtinen, Timo
Aila, ArXiv:2106.12423]



https://arxiv.org/search/cs?searchtype=author&query=Karras,+T
https://arxiv.org/search/cs?searchtype=author&query=Aittala,+M
https://arxiv.org/search/cs?searchtype=author&query=Laine,+S
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https://arxiv.org/search/cs?searchtype=author&query=Lehtinen,+J
https://arxiv.org/search/cs?searchtype=author&query=Aila,+T
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StyleGAN training and tuning

* Pre-training: 10380 portraits in all genres

 Many different authors (including Van Gogh)

e 5Mepochson4 GPUs \

« “Raw GANs” dataset: random synthetic portraitsin a varie%y of styles

* Tuning: 50k epochs training on Van Gogh originals only

* “Tuned GANs” dataset: synthetic Van Gogh forgeries

* Longer tuning results in overfitting, Style GAN mainly reproduces training
data

* (20k—-100k epochs enough to learn the author style and avoid overfitting)



StyleGAN training and tuning

* We use default settings for Style GAN2

* Works better for artwork than the more advanced Style GANS3 (optimized for
photorealistic images/video)

 StyleGAN3 improves translational invariance

* Tends to smear local hard transitions, often featured by brush strokes



Variational Autoencoders (VAES) (prelude to stable diffusion)

d4(z|x) —Encoder, data (x) > latent space (z)
Gaussian models (most often)

14(2z) = N(u(z), 0% (2)))
ll po(x|z) - Decoder, latent space (z) - data (x)
Z > X, X~>z:approximated in terms of the deep
neural network with parameters 6 and ¢
Cost function: Evidence Lower Bound (ELBO)

Random number
generator

Decoder

Loy = (log(po(2]2))) g, (aa)) — Drr (g(2[2)[p(2))

Kullback-Leibler divergence Likelihood of Deyiation O_f q,(2|x) from
p1(y reconstructed data unit Gaussian p(z)
Dgr(p1(y)lp2(y)) = <log ( ( ))>
p2(y) p

Dy, prevents g4(z|x) from learning the data exactly



Stable diffusion
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* We use Stable Diffusion 2.0 asis

* No post-training or fine-tuning

* The modelis already trained on a
huge amount of data

Variational Autoencoder:
learns the latent space
representation of images and
generates output images

Denoising: transform/de-
noise latent space
conditioned on text
prompt/other image/etc.




Output data

Wacker forgery
Original

Stable Diffusion
StyleGAN

* Two different classifiers to recognize forgeries
* Not acompetition, the goal is to demonstrate universality



Forgery detection: transformer-based
classification (SwinBase)

~ segmentation e Analysis of hierarchical feature maps
classification  detection ..., 994y 994 x RGB input, 88M parameters
* Final activation layer > dense layer
converging in a sigmoid
* Binary classification
e Cost function: binary cross-entropy

LT e i ot A C=- Z% log (P (yi = 1|x;)) — Z (1 —yi)log (P (yi = Ofz;))
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* Learning rate 10>, batch size 32

FromLiuZ, LinY, CaoY, Hu H, Wei Y, Zhang Z, et al. Swin
Transformer: Hierarchical Vision Transformer using Shifted
Windows. In: 2021 IEEE/CVF International Conference on
Computer Vision (ICCV),
https://dx.doi.org/10.1109/ICCV48922.2021.00986.



https://dx.doi.org/10.1109/ICCV48922.2021.00986

Forgery detection: CNN classification

(EfficientNet BO)
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Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
In: Chaudhuri K, Salakhutdinov R, editors. Proceedings of the 36th International

Conference on Machine Learning. vol. 97 of Proceedings of Machine Learning Research.

PMLR; 2019. p. 6105-6114. Available from:
https://proceedings.mlr.press/v97/tan19a.html.

256 x 254 x RGB input, 5.3M
parameters

Binary classification
Cost function: binary cross-

entropy

Learning rate 10>, batch size 32


https://proceedings.mlr.press/v97/tan19a.html

Experiment setup

Training Testing

N N ) )

Experiment 1

Training with ‘imitations’

Experiment 2

Training without ‘imitations’
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no synthetic raw GANs tuned GANs diffusion diffusion+GANs

How synthetic forgeries help to detect human-made ones?

30 synthetic images > 150 patches in each category

Can GenAl replace human-made forgeries altogether? (If there are no
known forgeries at all)



accuracy

Results — human forgeries + synthetic

training with forgeries, Swin Base training with forgeries, EfficientNet BO
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GAN images alone may or may not help depending on classifier
Stable diffusion always improves accuracy

Too good data results in overfitting (diff.+GANs for Swin Base)




Results — synthetic only

training without forgeries, Swin Base training without forgeries, EfficientNet B0
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* Here the model never sees human forgeries during training
 Again, Stable diffusion always improves accuracy
* Too much synthetic data makes classifier primarily detect GenAl results
[ ]

Success of Stable Diffusion? Sheer amount of training data?



accuracy

Results — detecting synthetic data

Swin Base EfficientNet B0
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Classifiers are trained on 4 different datasets (incl/excl. synthetic data)
Tested on unseen synthetic data — either GANs or Stable Diffusions
GANs appear much easier to detect even when previously unseen
Partially explains the success of Stable Diffusion



Outlook

t appears that Stable Diffusion is the best “Al forger”
Results are author-dependent: e.g. no particular advantage of Stable
Diffusion for Modigliani

All tuned synthetic data improves accuracy of human forgery detection
Unsupervised learning approaches?

Inclusion of more data layers (e.g. chemical composition)?
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* “Mother Nature is the greatest artist and water is one of her
favorite brushes.” — Rico Besserdich, underwater
photographer

* As a theoretical physicist, I’d say quantum fields are Nature’s
favorite brushes...
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(c) D. Leinweber ™

* What | discuss further applies equally to statistical physics



Probabilistic/Bayesian interpretation of GenAl

10

0.0F

We are trying to learn a probability
distribution p(x) of data x

Any artist only produces a finite amount of
works

Probability distribution is just a collection
of Dirac delta-functions

No infinite statistical ensemble exist
Approximate with a smooth, continuous
distribution

This distribution is complex and multi-
modal



Probabilities in statistical physics

* Probability distribution is usually known exactly as a simple*

mathematical formula
Plo.] =N exp (8 Z O O'y)

* Ising model (o,=+17):
<T,y>

* Large number of degrees of freedom

* Emergent complex phenomena (percolation,
fractality)

* Despite mathematical simplicity:

* Multi-modal probability distributions, regions of
large weight interleaved with almost empty areas




Probabilities in guantum field theory

* Quantum amplitudes/partition functions written as path integrals
* QCD, the theory of strong nuclear interactions

zZ = /D Dq (x)Dq (a
exp (— /d433 ((j'y‘“‘ (0, —igA,)q+Tr

* Probability only properly defined for bosonic fields (gluons A (x))
* Fermionic fields: anticommuting, only make sense in mtegrals
* Complex, nonlocal weight for A (x) after integrating out g(x)

Z = /I) det [v" (0, — g )]\' exp (— /d'i:}:'Tr )



Lattice field theory

Continuous coordinates > lattice
(space + time or just space)

Scalar fields > Lattice sites

Vector fields > Lattice links

Rank-2 tensors > Lattice plaquettes

nfinite-dimensional path integrals >
Nigh-dimensional ordinary integrals
ntegral weight ~ Probability
Sampling via Monte-Carlo




Probabilities in guantum field theory

* QCD pathintegral weight features (almost) disjoint topological charge
sectors

(c) D. Leinweber X

* Sectors of positive/negative magnetizations in the Ising model

* Problem: How to generate configurations according to
very high-dimensional, unfactorizable probability?



Monte-Carlo sampling and Metropolis algorithm

Set of stochastic updates Y > X, probability P(X|Y)
Target probability distribution W(X)
Accept each update with probability

W (X)P(Y|X)
W(Y) P (Xm)
Updates should be ergodic (any X reachable from any Y via a flnlte
number of updates)

Good updates have high acceptance
probability
They are notoriously difficult to design

Example: cluster updates vs. local updates
for the Ising model

A(X]Y) = min (1




Metropolis algorithm and autocorrelations

* With conditional updates Y > X, X and Y are correlated

* Monte-Carlo averaging needs statistically independent samples

* Decorrelating samples may take many updates — measured in terms of
autocorrelation times ...

(O (X;) O (Xizg)) — (O (Xi))(O(Xigg)) ~exp(—F/7,)

tests ———————————— . Autocorrelation times

o—=a beta=0.46, <m>=(

|- e | grow exponentially
) / | |- =ees with volume
y=1.56 (/10)"%

Mathematically, an
NP-hard problem!

L . .. ... 1 [FromK.Langfeld, PB, P.Rakow, J.Roscoe
size L Phys. Rev. E 106, 054139]

autocorrelation times




Machine learning approaches to Monte-Carlo

Instead of devising update schemes ourselves,
can we use ML to learn the required probability
distribution?

GenAl approaches that work well for
Images/text/music/etc. do not straightforwardly
generalize to Monte-Carlo...

Low-dimensions latent space is enough to
capture the essential info in images etc...
Always a complex hypersurface embedded in a
high-dimensional configuration space

Not ergodic if we want to sample the entire
configuration space




Let’s remember how to sample from an arbitrary 1D probability
distribution p(x)...

Normalizing flow
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Normalizing flow

« Sample g from a simple probability distribution (uniform, normal...)
* Construct a mapping g 2> x: x = F(qg) such that x has the required distribution

_O0F(q) , OF(q) dp dp(x) _ [ OF B
ettt e (5

* Neural networks as universal function approximators to construct F(q)

dx

Linear transforms Bias




Universal function approximators

T = ngl)a (’lU,gQ)q —+ ]),‘)

g . X * Let’s make all w@ very large
- * rescale b, by w/?
* Sigmoid > Heaviside step function

L = Z ’w@@ (q — [).,-_)

With positive w;,, can approximate any
monotonic function
Exactly what we need for normalizing flow




Generalizing to higher-dimensional data

Higher-dimensional mapping g = x: x = F(g) such that x has the required
distribution

T (q)

- 1\ —1
P(z) = [ det OFi () 7 (q (z Jacobian
! 04; q(x) |

Higher-dimensional generalization also for universal approximation
theorem

Avoids autocorrelation problems altogether!

BUT... Need to compute Jacobians for deep Neural Networks
Computationally intensive and difficult for general NN architectures
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 Jacobianis easyto compute

* s, andt, approximated with DNNs

* ¢ and x are reshuffled from layer to layer
* Network still sufficiently expressive L

Affine layers
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Normalizing flow — cost function

KL divergence between W(x) ~ exp(-S[x]) and P(x) :

(log (;E) ) Plz]

Dir (P [z]|W [z]) = (Y sk + S [2(q)] )n[q + const
k
S[x]is the action of quantum fields x in (d+1)-dimensional space-time

X 1s an abstract collective notation for discretized degrees of freedom

Drer (P [z]|[W [z])

Now one can use conventional stochastic optimization algorithms

No previously generated data is necessary, as S/x]/ is known exactly!



Normalizing flow — making it exact

P(x) is not exactly equivalent to W(x) ~ exp(-S[x])
Neural nets only serve as approximation to exact normalizing flow mapping
Use NN output as Metropolis proposal:

W (X) P(Y|X)
W(Y) P(X\F))

W(X), W(Y) and P(Y|X) and P(X|Y) all computable (affine layers are invertible)
Significantly better acceptance [ArXiv:1904.12072]

Flow-based Markov Chain Monte-Carlo

Applications to lattice QCD being currently developed [e.g. R. Abbot et al.,
ArXiv:2207.08945]

Multi-modal distributions may still be challenging (mode collapse) [e.g.
Hackett et al., 2107.00734]

A(X]Y) = min (1



Generalizing local updates with VAEs
[ongoing work with J. Hadley]

IBRZAEA|

P O’xlO' N exp (/Bo-x (O-CL’ 1 +J$—|—l))

Normalizing flow requires huge bandwidths (all degrees of freedom at once)
Use VAEs to learn local updates: convolutions of nearest neighbours -

mean and dispersion for updated values
Produce updates rather than entire configurations > ergodic despite low

dimensionality



Summary

GenAl is a good art forger — but let’s use it for good!

Stable diffusion produces forgeries that can hardly be detected without pre-
training

Stable diffusion improves detection efficiency for human-made forgeries

Generating random configurations of qguantum fields is different from
generating images/text/music...

We have to reproduce the probability distribution exactly

Ergodicity and dimensionality issues

Computational cost of training? E.g. normalizing flow?
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