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Talk outline

• Setting the stage: Artefact/forgery detection 
using ML

• Generative neural networks for image 
generation

• Adversarial learning
• Quantum field configurations vs artwork
• Monte-Carlo algorithms and their challenges
• Using neural networks to accelerate Monte-

Carlo (normalizing flow)



Forgeries and art market

• Global art market worth ~ $60 billion
• Authenticity/value of assets established by 

expert opinions
• Selling artwork forgeries is a lucrative 

criminal activity



Forgeries and art market

• Wolfgang Beltracchi forged many artworks by 
famous authors

• In 2006, Beltracchi’s fake “La Horde” (assumed 
author Max Ernst) sold at Christie’s for £3,000,000

• In 1920s, Otto Wacker sold >30 fake Van Gogh
paintings, of which many were included in 
catalogues

• John Myatt, British author of “genuine forgeries”
• Many forgeries are not discovered yet …



Art classification and machine learning
• Human expert opinions often contradict each other
• Machine learning methods: more objective decisions? 
• Most studies to date concentrate on artwork attribution
• Style extraction and attribution algorithms:

• fractal analysis
• wavelets
• sparse coding
• clustering-based segmentation
• tight frame method
• Convolutional neural networks (CNNs)
• Visual transformer NNs



Challenges of art authentication
• CNNs: supervised learning, trained on labelled datasets
• Default option: Van Gogh vs everything not Van Gogh – not very 

useful (all forgeries are still Van Gogh)
• Better: Binary classification, Van Gogh vs all known forgeries of 

Van Gogh
• Challenge: 900 paintings + >1000 sketches/drawings by real Van 

Gogh, < 50 known forgeries (30 by Wacker)
• Huge imbalance in True/False datasets, typical for most well-

known artists 

Image by wirestock on Freepik/Image by master1305 on Freepik



Art forgeries and Generative AI
• Modern GenAI able to learn any artist’s style nowadays
• GenAI can create advanced art forgeries
• Artefacts quite different from human ones (evidenced by Fourier analysis 

etc), can be removed once known
• Considered a threat to art/creativity market and artists’ jobs
• Let’s turn things around and use GenAI to protect art market!



Work with Art Recognition AG (Carina Popovici, Eric Postma, Ludovica 
Schaerf) and Johann Ostmeyer (Bonn): 

• use GenAI to create more balanced datasets for art authentication

• I’ll cover technical solutions behind this work before moving to 
quantum physics

Generative AI and art authentication



Dataset composition
• Labelled data/supervised learning:

• 126 original Van Gogh paintings (RGB) => Ground truth
• 212 stylistically similar images (other impressionist/expressionist artists, 

van Gogh followers) => Contrast set (mostly for pre-training)
• 11 Wacker forgeries => Contrast set
• 8 “genuine forgeries” by John Myatt => Contrast set

• Authenticity analysis mainly based on small-scale details 
• Use patches of original images 
• 21, 5, or 1 adjacent non-overlapping patches. 
• Bi-cubic resampling to 224 × 224 or 256 × 256 (classifier input)
• Split patches into training (72%), validation (11%), 
    and test (17%) sets
• 10 random splits, bootstrapped cross-validation



Generative adversarial networks (GANs)
[Goodfellow and collaborators’2014]

• Zero-sum game: generator vs. discriminator (win of one is the loss of another)
• Discriminator D(x): image (x) -> [0 ... 1] (authentic/not authentic)
• Generator G(z): latent space (z) -> image G(z)
• Cost function:



StyleGAN
• Mapping network: Latent space -> 

latent code
• L0 … L13 flexible layers operate in 

Fourier space
• Increasing frequency cutoff to allow for 

finer and finer details
• Each layer receives random input (bias 

b2, linear transform w2) 

From [Alias-Free Generative Adversarial 
Networks, 
Tero Karras, Miika Aittala, Samuli Laine, Erik 
Härkönen, Janne Hellsten, Jaakko Lehtinen, Timo 
Aila, ArXiv:2106.12423]

https://arxiv.org/search/cs?searchtype=author&query=Karras,+T
https://arxiv.org/search/cs?searchtype=author&query=Aittala,+M
https://arxiv.org/search/cs?searchtype=author&query=Laine,+S
https://arxiv.org/search/cs?searchtype=author&query=H%C3%A4rk%C3%B6nen,+E
https://arxiv.org/search/cs?searchtype=author&query=Hellsten,+J
https://arxiv.org/search/cs?searchtype=author&query=Lehtinen,+J
https://arxiv.org/search/cs?searchtype=author&query=Aila,+T


StyleGAN training and tuning
• Pre-training: 10380 portraits in all genres
• Many different authors (including Van Gogh)
• 5M epochs on 4 GPUs
• “Raw GANs” dataset: random synthetic portraits in a variety of styles
• Tuning: 50k epochs training on Van Gogh originals only
• “Tuned GANs” dataset: synthetic Van Gogh forgeries
• Longer tuning results in overfitting, StyleGAN mainly reproduces training 

data
• (20k – 100k epochs enough to learn the author style and avoid overfitting)

Image by tohamina on Freepik



StyleGAN training and tuning

• We use default settings for StyleGAN2
• Works better for artwork than the more advanced StyleGAN3 (optimized for 

photorealistic images/video)
• StyleGAN3 improves translational invariance
• Tends to smear local hard transitions, often featured by brush strokes

Image by tohamina on Freepik



Variational Autoencoders (VAEs) (prelude to stable diffusion)

• qφ(z|x) – Encoder, data (x) → latent space (z)
• Gaussian models (most often)

• pθ(x|z) – Decoder, latent space (z) → data (x)
• z → x, x → z : approximated in terms of the deep 

neural network with parameters θ and φ
• Cost function: Evidence Lower Bound (ELBO)

• DKL prevents qφ(z|x) from learning the data exactly

Likelihood of 
reconstructed data

Deviation of qφ(z|x) from 
unit Gaussian p(z)

Kullback–Leibler divergence



Stable diffusion • Variational Autoencoder: 
learns the latent space 
representation of images and 
generates output images

• Denoising: transform/de-
noise latent space 
conditioned on text 
prompt/other image/etc.

© Machine Vision and Learning Group, LMU Munich

By Benlisquare - Own work, CC BY-SA 4.0

• We use Stable Diffusion 2.0 as is
• No post-training or fine-tuning
• The model is already trained on a 

huge amount of data 



Output data

Original
Wacker forgery

StyleGAN
Stable Diffusion

• Two different classifiers to recognize forgeries
• Not a competition, the goal is to demonstrate universality



Forgery detection: transformer-based 
classification (SwinBase)

From Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin 
Transformer: Hierarchical Vision Transformer using Shifted 
Windows. In: 2021 IEEE/CVF International Conference on 
Computer Vision (ICCV), 
https://dx.doi.org/10.1109/ICCV48922.2021.00986. 

• Analysis of hierarchical feature maps
• 224 x 224 x RGB input, 88M parameters
• Final activation layer → dense layer 

converging in a sigmoid
• Binary classification
• Cost function: binary cross-entropy

• Learning rate 10-5, batch size 32

https://dx.doi.org/10.1109/ICCV48922.2021.00986


Forgery detection: CNN classification 
(EfficientNet B0)

Tan M, Le Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 
In: Chaudhuri K, Salakhutdinov R, editors. Proceedings of the 36th International 
Conference on Machine Learning. vol. 97 of Proceedings of Machine Learning Research. 
PMLR; 2019. p. 6105–6114. Available from: 
https://proceedings.mlr.press/v97/tan19a.html. 

• 256 x 254 x RGB input, 5.3M 
parameters

• Binary classification
• Cost function: binary cross-

entropy

• Learning rate 10-5, batch size 32

https://proceedings.mlr.press/v97/tan19a.html


Experiment setup

• How synthetic forgeries help to detect human-made ones?
• 30 synthetic images → 150 patches in each category 
• Can GenAI replace human-made forgeries altogether? (If there are no 

known forgeries at all)



Results – human forgeries + synthetic

• GAN images alone may or may not help depending on classifier
• Stable diffusion always improves accuracy
• Too good data results in overfitting (diff.+GANs for Swin Base)



Results – synthetic only 

• Here the model never sees human forgeries during training
• Again, Stable diffusion always improves accuracy
• Too much synthetic data makes classifier primarily detect GenAI results
• Success of Stable Diffusion? Sheer amount of training data?



Results – detecting synthetic data

• Classifiers are trained on 4 different datasets (incl/excl. synthetic data)
• Tested on unseen synthetic data – either GANs or Stable Diffusions
• GANs appear much easier to detect even when previously unseen
• Partially explains the success of Stable Diffusion



Outlook
• It appears that Stable Diffusion is the best “AI forger”
• Results are author-dependent: e.g. no particular advantage of Stable 

Diffusion for Modigliani
• All tuned synthetic data improves accuracy of human forgery detection
• Unsupervised learning approaches?
• Inclusion of more data layers (e.g. chemical composition)?



• “Mother Nature is the greatest artist and water is one of her 
favorite brushes.” ― Rico Besserdich, underwater 
photographer

• As a theoretical physicist, I’d say quantum fields are Nature’s 
favorite brushes…

• What I discuss further applies equally to statistical physics

(c) D. Leinweber



Probabilistic/Bayesian interpretation of GenAI

• We are trying to learn a probability 
distribution p(x) of data x

• Any artist only produces a finite amount of 
works

• Probability distribution is just a collection 
of Dirac delta-functions 

• No infinite statistical ensemble exist
• Approximate with a smooth, continuous 

distribution
• This distribution is complex and multi-

modal



Probabilities in statistical physics
• Probability distribution is usually known exactly as a simple* 

mathematical formula
• Ising model (σx= ±1):

• Large number of degrees of freedom
• Emergent complex phenomena (percolation, 

fractality)
• Despite mathematical simplicity:
• Multi-modal probability distributions, regions of 

large weight interleaved with almost empty areas



Probabilities in quantum field theory
• Quantum amplitudes/partition functions written as path integrals
• QCD, the theory of strong nuclear interactions

• Probability only properly defined for bosonic fields (gluons Aμ(x))
• Fermionic fields: anticommuting, only make sense in integrals
• Complex, nonlocal weight for Aμ(x) after integrating out q(x)



Lattice field theory
• Continuous coordinates → lattice 

(space + time or just space)
• Scalar fields → Lattice sites
• Vector fields → Lattice links
• Rank-2 tensors → Lattice plaquettes

• Infinite-dimensional path integrals → 
high-dimensional ordinary integrals

• Integral weight ~ Probability
• Sampling via Monte-Carlo



Probabilities in quantum field theory
• QCD  path integral weight features (almost) disjoint topological charge 

sectors

• Sectors of positive/negative magnetizations in the Ising model

• Problem: How to generate configurations according to 
very high-dimensional, unfactorizable probability?

(c) D. Leinweber



Monte-Carlo sampling and Metropolis algorithm
• Set of stochastic updates Y → X, probability P(X|Y)
• Target probability distribution W(X)
• Accept each update with probability

• Updates should be ergodic (any X reachable from any Y via a finite 
number of updates)

• Good updates have high acceptance 
       probability
• They are notoriously difficult to design
• Example: cluster updates vs. local updates 
       for the Ising model



Metropolis algorithm and autocorrelations
• With conditional updates Y → X, X and Y are correlated
• Monte-Carlo averaging needs statistically independent samples
• Decorrelating samples may take many updates – measured in terms of 

autocorrelation times …

[From K.Langfeld, PB, P.Rakow, J.Roscoe
Phys. Rev. E 106, 054139]

Autocorrelation times 
grow exponentially 
with volume

Mathematically, an 
NP-hard problem!



Machine learning approaches to Monte-Carlo
• Instead of devising update schemes ourselves, 

can we use ML to learn the required probability 
distribution?

• GenAI approaches that work well for 
images/text/music/etc. do not straightforwardly 
generalize to Monte-Carlo…

• Low-dimensions latent space is enough to 
capture the essential info in images etc…

• Always a complex hypersurface embedded in a 
high-dimensional configuration space 

• Not ergodic if we want to sample the entire 
configuration space



Normalizing flow
• Let’s remember how to sample from an arbitrary 1D probability 

distribution p(x)…

• Random q ∈ [0, 1]                                       - inverse function, normalizing flow 

P(x)



Normalizing flow
• Sample q from a simple probability distribution (uniform, normal…)
• Construct a mapping q → x: x = F(q) such that x has the required distribution

• Neural networks as universal function approximators to construct F(q)

q x

Linear transforms Bias



Universal function approximators

q x • Let’s make all wi
(2) very large

• rescale bi by wi
(2)

• Sigmoid → Heaviside step function

• With positive wi, can approximate any 
monotonic function

• Exactly what we need for normalizing flow



• Higher-dimensional mapping q → x: x = F(q) such that x has the required 
distribution

• Higher-dimensional generalization also for universal approximation 
theorem

• Avoids autocorrelation problems altogether!
• BUT… Need to compute Jacobians for deep Neural Networks
• Computationally intensive and difficult for general NN architectures

Generalizing to higher-dimensional data

Jacobian



Affine layers

• Jacobian is easy to compute
• sk and tk approximated with DNNs
• φ and χ are reshuffled from layer to layer
• Network still sufficiently expressive

[Diagram from 
ArXiv:2303.15136]



Normalizing flow – cost function
• KL divergence between W(x) ~ exp(-S[x]) and P(x) :

• S[x] is the action of quantum fields x in (d+1)-dimensional space-time
• x is an abstract collective notation for discretized degrees of freedom

• Now one can use conventional stochastic optimization algorithms

• No previously generated data is necessary, as S[x] is known exactly!



Normalizing flow – making it exact
• P(x) is not exactly equivalent to W(x) ~ exp(-S[x]) 
• Neural nets only serve as approximation to exact normalizing flow mapping
• Use NN output as Metropolis proposal:

• W(X), W(Y) and P(Y|X) and P(X|Y) all computable (affine layers are invertible)
• Significantly better acceptance [ArXiv:1904.12072]
• Flow-based Markov Chain Monte-Carlo
• Applications to lattice QCD being currently developed [e.g. R. Abbot et al., 

ArXiv:2207.08945]
• Multi-modal distributions may still be challenging (mode collapse) [e.g. 

Hackett et al., 2107.00734]



Generalizing local updates with VAEs
[ongoing work with J. Hadley]

• Normalizing flow requires huge bandwidths (all degrees of freedom at once)
• Use VAEs to learn local updates: convolutions of nearest neighbours → 

mean and dispersion for updated values
• Produce updates rather than entire configurations → ergodic despite low 

dimensionality

P(σx=+1)
P (σx=-1)



Summary
• GenAI is a good art forger – but let’s use it for good!
• Stable diffusion produces forgeries that can hardly be detected without pre-

training
• Stable diffusion improves detection efficiency for human-made forgeries

• Generating random configurations of quantum fields is different from 
generating images/text/music…

• We have to reproduce the probability distribution exactly 
• Ergodicity and dimensionality issues

• Computational cost of training? E.g. normalizing flow?
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