
Git Workshop

Motivation
Version control 

systems
Git concepts

First Git repository Remote/origin Collaborative coding



Version Control Systems

Git, MercurialSubversion (SVN)

• Key tool for all coding, and much more
• Necessary for all collaborative coding
• Integral to all software engineering

Credit: https://www.edureka.co/blog/what-is-git/



Which VCS to use?

https://rhodecode.com/insights/version-control-systems-2016

https://survey.stackoverflow.co/2022/#version-control-version-control-system

https://sourcelevel.io/blog/7-git-best-
practices-to-start-using-in-your-next-
commit



What is Git?

Tracking code changes

Tracking who made changes

For collaboration

Invented by L. Torvalds for Linux Kernel

Not the same as GitHub or Gitlab

Distributed VCS

https://support.nesi.org.nz/hc/en-gb/articles/360001508515-Git-Reference-Sheet



Intro to Git

Installing it -> follow instructions on official site for your system

Configure git on your system:

• git config --global user.name "Jacinda Arden"

• git config --global user.email j.arden@nz_is_awesome.com

Starting to use git:

• Go to directory your code is in

• git init

• This creates a .git/ folder with the repo

• Set remote (c.f. next slide)

Or simply clone an existing repo:

• git clone <url>

https://git-scm.com/

mailto:j.arden@nz_is_awesome.com


Using Git
https://git-scm.com/

• Git will only track the files 
in the folder you add 
with:
• git add <file/dir>
• DO NOT ADD BIG (>10MB) 

FILES TO REPO!!

• Only added to repository 
after a commit:
• git commit –m "message"

• Pushing to remote:
• git push

• Try not to have commitment issues.

• Commits are not 'new snapshots'. They are stored changes.

• Informative but short messages.

• Commit and push often.

• Use branching for parallel work

• Use Pull Requests (aka Merge Requests) for collaborative 
work.



Git Concepts

• Local and remote repos

• Clone

• Staging/tracking

• Commits

• Branches

• Merging

• Checkout

• Pull Requests

• Cherry-picking



Git Cheat 
Sheets

• https://dev.to/doabledanny/
git-cheat-sheet-50-commands-
free-pdf-and-poster-4gcn

• https://www.atlassian.com/g
it/tutorials/atlassian-git-
cheatsheet

• https://intellipaat.com/blog/
tutorial/devops-tutorial/git-
cheat-sheet/

https://dev.to/doabledanny/git-cheat-sheet-50-commands-free-pdf-and-poster-4gcn
https://dev.to/doabledanny/git-cheat-sheet-50-commands-free-pdf-and-poster-4gcn
https://dev.to/doabledanny/git-cheat-sheet-50-commands-free-pdf-and-poster-4gcn
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet
https://intellipaat.com/blog/tutorial/devops-tutorial/git-cheat-sheet/
https://intellipaat.com/blog/tutorial/devops-tutorial/git-cheat-sheet/
https://intellipaat.com/blog/tutorial/devops-tutorial/git-cheat-sheet/


Typical workflow for individuals

• Sarah has some code that they want version controlled. For this we assume 
GitHub setup already in place.

• They create a GitHub repository called 'some_code' (origin).
• Then, once created, they clone it locally. A some_code/ folder is created, with 

a local repo and a .git/ folder inside. The GitHub repo is set as 'origin' already.
• They copy all the existing code to this new directory, and start committing files, 

pushing to origin and generally working on it.
• A few weeks later, Sarah makes a breaking change to the code. It no longer 

works and it's not obvious why. Luckily, they can diff the current state with an 
earlier version that worked and can either identify the breaking change or 
revert back to that earlier version.

• Success! This code can even be shared with others easily in the future.



Task 1: Create a 
new 
Github repository

• Create a new repo

• Clone it locally:
• git clone git@github.com:<us

ername>/<repo>.git

• Make a new file, add some 
content

• Git add, commit, push

• Inspect github

• Branch, commit and merge

mailto:git@github.com:%3cusername%3e/%3crepo%3e.git
mailto:git@github.com:%3cusername%3e/%3crepo%3e.git


Working Directory Staging Area Local Repo
Remote repo/

origin

add/stage commit push/sync

git add <file(s)/folder> git commit -m <message> git push



Typical workflow for teams 
• Sarah has some code that they want Bob and James to make contributions to. Sarah shares the GitHub repo with 

them.

• Bob clones it locally and creates a branch called 'bob_working'. Bob continues to code on that branch, committing 
and pushing to GitHub.

• Separately, James clones the repo, creates a new 'feature/james-awesome-stuff' branch and starts working on a 
new feature there.

• Bob is done with their work and wants it to be part of the 'main' branch (the code in production). They create 
a PR and ask Sarah to review it.

• Sarah approves and merges the PR. Bob's code is now part of the 'main' branch.

• A few days later, James wants to do the same. They create a PR and ask Sarah to approve, with optional review by 
Bob. Immediately, GitHub detects that, when merged, this would cause a code conflict with Bob's new code, 
which Bob also comments on.

• James pulls the 'main' branch from GitHub to their local repo and merges it to the 'feature/james-awesome-
stuff' branch. Git detects the same merge conflict and James is able to resolve it, commiting and pushing the 
changes. The conflict is no longer present on both the local repo and at GitHub.

• Sarah approves and merges the PR and James' code is now on the 'main' branch too, ready for production.



Typical workflow for teams

Sarah

some_code

main

JamesBob

Repository branchLegend:

Sarah's account

some_code
main



Sarah's account

Typical workflow for teams

some_code
main

Sarah

some_code

main

JamesBob

some_code

main



Sarah's account

Typical workflow for teams

some_code
main

Sarah

some_code

main

JamesBob

some_code

bob_working

main

bob_working



Sarah's account

Typical workflow for teams

some_code
main

Sarah

some_code

main

JamesBob

some_code

bob_working

main

some_code

main

bob_working



Sarah's account

Typical workflow for teams

some_code
main

Sarah

some_code

main

JamesBob

some_code

bob_working

main

some_code

main

feature/james-awesome-stuff

bob_working

feature/james-awesome-stuff



Sarah's account

Typical workflow for teams

some_code
main

Sarah

some_code

main

JamesBob

some_code

bob_working

main

some_code

main

feature/james-awesome-stuff

bob_working
PR

feature/james-awesome-stuff



Sarah's account

Typical workflow for teams

some_code
main

Sarah

some_code

main

JamesBob

some_code

bob_working

main

some_code

main

feature/james-awesome-stuff

bob_working
PR

feature/james-awesome-stuff



Sarah's account

Typical workflow for teams

some_code
main

Sarah

some_code

main

JamesBob

some_code

bob_working

main

some_code

main

feature/james-awesome-stuff

bob_working

feature/james-awesome-stuff

PR



Sarah's account

Typical workflow for teams

some_code
main

Sarah

some_code

main

JamesBob

some_code

bob_working

main

some_code

main

feature/james-awesome-stuff

bob_working

feature/james-awesome-stuff

PR



Sarah's account

Typical workflow for teams

some_code
main

Sarah

some_code

main

JamesBob

some_code

bob_working

main

some_code

main

feature/james-awesome-stuff

bob_working

feature/james-awesome-stuff

PR



Sarah's account

Typical workflow for teams

some_code
main

Sarah

some_code

main

JamesBob

some_code

bob_working

main

some_code

main

feature/james-awesome-stuff

bob_working

feature/james-awesome-stuff

PR



Sarah's account

Typical workflow for teams

some_code
main

Sarah

some_code

main

JamesBob

some_code

bob_working

main

some_code

main

feature/james-awesome-stuff

bob_working

feature/james-awesome-stuff



GitFlow

https://docs.ultrazohm.com/general/project_structure/contribution_workflow.html



Task 2: Contribute to an existing repo
https://github.com/jpsbento/git-sandbox

• git clone git@github.com:jpsbento/git-sandbox.git

• Clone this repo locally

• Scenarios:
• A: Multiple developers work 

on same branch (merge 
conflicts)

• B: Multiple developers on 
separate branches 
and merging with PRs

• C: Cherry picking



Git Summary

• It's a distributed VCS, great for collaborative work.

• It's the industry standard, and it's for everyone.

• It is easy to use, once you get used to it. So get used to it!

• Integrates with all systems, IDEs and works everywhere.

• Has one major caveat: It doesn't work well with large files or binary 
files.
oDON'T COMMIT A LARGE FILE. Even if you remove it later, the repo will still 

have the original version of it.
oPurging a file completely from the repository history is VERY HARD.
o For large file VCS, use either Git-LFS, MLFlow or DVC.



Data Version Control (dvc.org)

• Efficient Handling of Large Files

• Reproduce Test Results and Original 
Data

• Works alongside Git

• Storage Flexibility

• Some basic DevOps knowledge 
required

• Increased Complexity






	Slide 1: Git Workshop
	Slide 2: Version Control Systems
	Slide 3: Which VCS to use? 
	Slide 4: What is Git? 
	Slide 5: Intro to Git
	Slide 6: Using Git
	Slide 7: Git Concepts
	Slide 8: Git Cheat Sheets
	Slide 9: Typical workflow for individuals
	Slide 10: Task 1: Create a new Github repository
	Slide 11
	Slide 12: Typical workflow for teams 
	Slide 13: Typical workflow for teams
	Slide 14: Typical workflow for teams
	Slide 15: Typical workflow for teams
	Slide 16: Typical workflow for teams
	Slide 17: Typical workflow for teams
	Slide 18: Typical workflow for teams
	Slide 19: Typical workflow for teams
	Slide 20: Typical workflow for teams
	Slide 21: Typical workflow for teams
	Slide 22: Typical workflow for teams
	Slide 23: Typical workflow for teams
	Slide 24: Typical workflow for teams
	Slide 25: GitFlow
	Slide 26: Task 2: Contribute to an existing repo https://github.com/jpsbento/git-sandbox
	Slide 27: Git Summary
	Slide 28: Data Version Control (dvc.org)
	Slide 29
	Slide 30

