Git Workshop

© git
Version Control Systems

* Key tool for all coding, and much more

* Necessary for all collaborative coding Distributed version control system
* Integral to all software engineering Senver

Centralized version control system

Server
» — ﬁ - — -_—
el [€l |2 E| (& El |2
=] g - £ 9 = @
8 (1)) o o 8 ™ 8 o

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3 Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

Subversion (SVN) Git, Mercurial

Credit: https://www.edureka.co/blog/what-is-git/

© git
W h i C h VCS tO u S e ? oo Questions on Stack Overflow, by Year

30,000

® Git . ® Apache Subversion Perforce ® Microsoft Visual So... +

20,000

Worldwide « 1/1/10-12/31/19 « All categories Web Search

Interest over time x .
10,000 / \
— —

e
II

2008 2009 2010 201 2012 2013 2014 2015
https://sourcelevel.io/blog/7-git-best-
practices-to-start-using-in-your-next-
commit

0

—— Git —=— SVN Mercurial —— Perforce —— CVS

https://rhodecode.com/insights/version-control-systems-2016

Git
SVN

| don't use one

Mercurial

https://survey.stackoverflow.co/2022 /#version-control-version-control-system

What is Git?

Tracking code changes

Tracking who made changes

For collaboration

o
Distributed version control system glt
Server

i=

0

-
.t'_g 2l | £ = | e

8 =

El | a El | a €| |a
£l | & IBE £l | &
Um Ul'D ut'D

Workstation/PC #1 Workstation/PC #2 Workstation/PC #3

LOCAL

Invented by L. Torvalds for Linux Kernel

Not the same as GitHub or Gitlab

Distributed VCS

it add SN gic comnit SR it push_ 3
ot reset L gt pull |

https://support.nesi.org.nz/hc/en-gb/articles/360001508515-Git-Reference-Sheet

https://git-scm.com/ Qgit
Intro to Git

Installing it -> follow instructions on official site for your system

Configure git on your system:

e git config --global user.name "Jacinda Arden"
e git config --global user.email j.arden@nz is awesome.com

Starting to use git:

® Go to directory your code is in

e gitinit

e This creates a .git/ folder with the repo
e Set remote (c.f. next slide)

Or simply clone an existing repo:

e git clone <url>

mailto:j.arden@nz_is_awesome.com

https://git-scm.com/ git
Using Git

* Git will only track the files

in the folder you add it comnit 3

with:
e git add <file/dir> (" git reset | o

DO NOT ADD BIG (>10MB)
FILES TO REPO!!

* Only added t(? repository * Try not to have commitment issues.
after a commit:

e git commit —m "message"

* Commits are not 'new snapshots'. They are stored changes.

* Informative but short messages.
* Pushing to remote: .

e git push

Commit and push often.
* Use branching for parallel work

e Use Pull Requests (aka Merge Requests) for collaborative
work.

* Local and remote repos
* Clone

* Staging/tracking

* Commits

* Branches

* Merging

* Checkout

* Pull Requests

* Cherry-picking

@O git

Git Cheat
Sheets

* https://dev.to/doabledanny/
git-cheat-sheet-50-commands-
free-pdf-and-poster-4gcn

e https://www.atlassian.com/g

it/tutorials/atlassian-git-
cheatsheet

* https://intellipaat.com/blog/
tutorial/devops-tutorial/git-
cheat-sheet/

Git Cheat Sheet

Setup

Set the name and email that will be
attached to your commits and tags

% git config --plobal
user.name “Danny Adams®
% git config --global
user.email "my-
email®gmail .com"

Start a Project

Create a local repo (omit <directory=
to initialise the current directory as a
it repa

5 git init =directory=

Download a remote repo

% git clone =url=

Make a Change

Add a file to staging

$ git add <file=

Stage all files

$ git add .

Commit all staged files to git

4 git commit -m “commit
message”

Add all changes made to tracked files
& commit

4 git commit -am “commit
message

Basic Concepts

main: default development
branch

origin: default upstream repo
HEAD: current branch

HEAD*: parent of HEAD
HEAD~4: great-great
grandparent of HEAD

Branches

List all local branches. Add -r flag to
show all remote branches. -a flag far
all branches,

5 git branch
Create a new branch
5 git branch <new-branch=

Switch to a branch & update the
working directory

% git checkout =zbranch=
Create a new branch and switch to it

% git checkout -b <new-
branch=

Delete a merged branch
% git branch -d =branch=

Delete a branch, whether merged or
not

% git branch -D <branch=

Add a tag to current commit (often
wsed for new versien releases)

& git tag <tag-name=

Merging

Merge branch a into branch b, Add -
no-ff aption for no-fase-forward
merge

MNew Merge Commit (ne-H)

5 git checkout b
5 git merge a

Werge & squash all commits into one
new comimit

S git merge squash a

Rebasing

Rebase feature branch onto main (to
neorporate new changes made to
main]. Prevents unnecessary merge
commits into feature, keeping histary
clean

C)B‘:,"""*‘:AE;;ES

$ git checkout feature
% pgit rebase main

Interatively clean up a branches
commits before rebasing onto main

$ git rebase -i main

Interatively rebase the last 3 commits
on current branch

$ git rebase -i Head-3

Undoing Things
Maove (Sdor rename) a file & stage
move

% git mv <ewxisting_paths
=new_path=

Remowve a file from working directory
4 staging area, then stage the
removal

5 git rm <file=

Remonve from staging area only

4 git rm --cached <=file=

Wiew a previous commit (READ only)
§ git eheckout <commit_ID=

Create a new commit, reverting the
changes fram a specified commit

$ git revert <commit_ID»>

Go back to a previous commit &
delete all commits ahead of it (revert
is safer). Add --hard flag to also
delete workspace changes (BE VERY
CAREFUL)

% git reset =commit_ID=

Review your Repo

List new or modified files not yat
committed

5 git status

List commit history, with respective
IDs

$ git log --oneline

Show changes to unstaged files, For
changes o staged files, add —-cached
option

§ git diff
Show changes between two Commits
% git diff commit]_ID

comait?_ID

Stashing

Store modified & staged changes. To
include untracked files, add -u flag,
For untracked & ignored files, add -a
flag.

3 git stash
As above, but add a comment.

5 git stesh save “comment”

Partial stash, Stash just a single file, a
collection of files, or individua
changes from within files

§ git stash -p

List all stashes

% git stash list

Re-apply the stash without deleting it
5 git stash apply

Re-apply the stash at index 2, then
delete it from the stash list. Omit
stash@{n} to pop the most recent
stash.

% git stash pop stash@{2}

Show the diff summary of stash 1,
Pass the -p flag to see the full diff,

§ git stash show stash@{1}

Delete stash at index 1, Omit
stash@{n} to delete last stash made

$ git stash drop stash@{1}
Delete all stashes

% git stash clear

Synchronizing

Add a remote repo

§ git remote add <alias-
wurls

‘iew all remote connections. Add -
flag 1o view urls

S git remote

Remenve a connection

$ git remote remove <aliass
Rename a connection

5§ git remote rename <old=
<MEW=

Fetch all branches from remate repo
{no merge)

$ git fetch <alias»
Fetch a specific branch
5 git fetch =alias> =<branch=

Fatch the remate repo’s copy of the
current branch, then merge

$ git pull

Move (rebase] your local changes
onto the top of new changes made to
the remaote repao {for clean, linear
history)

% git pull --rebase <alias>
Lipload local content to remaote repo
§ git push <alias=

Upload to a branch (can then pull
reguesty

5 git push <=alias> <branch=

https://dev.to/doabledanny/git-cheat-sheet-50-commands-free-pdf-and-poster-4gcn
https://dev.to/doabledanny/git-cheat-sheet-50-commands-free-pdf-and-poster-4gcn
https://dev.to/doabledanny/git-cheat-sheet-50-commands-free-pdf-and-poster-4gcn
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet
https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet
https://intellipaat.com/blog/tutorial/devops-tutorial/git-cheat-sheet/
https://intellipaat.com/blog/tutorial/devops-tutorial/git-cheat-sheet/
https://intellipaat.com/blog/tutorial/devops-tutorial/git-cheat-sheet/

git
Typical workflow for individuals

* Sarah has some code that they want version controlled. For this we assume
GitHub setup already in place.

* They create a GitHub repository called 'some_code' (origin).

* Then, once created, they clone it locally. A some code/ folder is created, with
a local repo and a .git/ folder inside. The GitHub repo is set as 'origin' already.

* They copy all the existing code to this new directory, and start committing files,
pushing to origin and generally working on it.

* A few weeks later, Sarah makes a breaking change to the code. It no longer
works and it's not obvious why. Luckily, they can diff the current state with an
earlier version that worked and can either identify the breaking change or
revert back to that earlier version.

* Success! This code can even be shared with others easily in the future.

Task 1: Create a
new
Github repository

Create a new repo

Clone it locally:
* git clone git@github.com:<us

ername>/<repo>.git

Make a new file, add some
content

Git add, commit, push
Inspect github

Branch, commit and merge

Create a new repository
A repository contains all project files, including the revision history. Already have a project repository
elsewhere? Import a repository.

Required fields are marked with an asterisk ().
Oowner * Repository name *
li- jpsbento - /
Great repository names are short and memorable. Need inspiration? How about probable-barnacle ?

Description (optional)

o g Public

\nyone on the internet can see this I’E‘iIICSi['ZJ"'_-r' You choose who can commit.

Private
o B

1 choose who can see and commit to this repos Tory.

Initialize this repository with:

(] Add a README file
This is where you can write a long description for your project. Learn more about READMEs

Add .gitignore
.gitignore template: None -

Choose which files not to track from a list of templates. Learn more about ignoring files

Choose a license
License: None -

A license tells others what they can a nd can't do with your code Learn more about licenses.

(@) You are creating a public repository in your personal account.

Create repository

mailto:git@github.com:%3cusername%3e/%3crepo%3e.git
mailto:git@github.com:%3cusername%3e/%3crepo%3e.git

SOURCE CONTROL = v D I‘-‘ SOURCE CONTROL
1
S i o R o s e e T e < o Adding verbosity to the main function| 2
5 5 —
i ~mmi ~r
" Commit | W
; ~ Staged Changes 1
v Changes S+ @ m:i,- , g

. aln. py
main.py oo ;

(= 'ﬂn__"

SOURCE CONTROL SOURCE CONTROL

" Commit
+* Sync Changes 1T

v Staged Changes 1

Cutgoing

main.py

v Changes > @ feature/jbento-changing-price

add/stage commit push/sync

Remote repo/
origin

Working Directory Staging Area Local Repo

/

git add <file(s)/folder> git commit -m <message>

git
Typical workflow for teams

Sarah has some code that they want Bob and James to make contributions to. Sarah shares the GitHub repo with
them.

Bob clones it locally and creates a branch called 'bob_working'. Bob continues to code on that branch, committing
and pushing to GitHub.

Separately, James clones the repo, creates a new 'feature/james-awesome-stuff' branch and starts working on a
new feature there.

Bob is done with their work and wants it to be part of the 'main' branch (the code in production). They create
a PR and ask Sarah to review it.

Sarah approves and merges the PR. Bob's code is now part of the 'main' branch.

A few days later, James wants to do the same. They create a PR and ask Sarah to approve, with optional review by
Bob. Immediately, GitHub detects that, when merged, this would cause a code conflict with Bob's new code,
which Bob also comments on.

James pulls the 'main' branch from GitHub to their local repo and merges it to the 'feature/james-awesome-
stuff' branch. Git detects the same merge conflict and James is able to resolve it, commiting and pushing the
changes. The conflict is no longer present on both the local repo and at GitHub.

Sarah approves and merges the PR and James' code is now on the 'main’ branch too, ready for production.

. Legend: it
Typical workflow for teams i og

Sarah O

some_code GitHUb

main

some_code

- . . .

Typical workflow for teams

Sarah

some_code

some_code

main

© git

some_code
main

6)

GitHub

Typical workflow for teams © git

Sarah O

some_code GitHUb

main
some_code I

- . . .

Bob

some_code

bob_working

main

Typical workflow for teams © git

6)

some_code GitHub

some_code
main

Sarah

some_code

main

main

some_code

bob_working
main

Typical workflow for teams

Sarah

some_code

main

Bob

some_code

bob_working

main

© git

some_code

6)

GitHub

some_code

feature/james-awesome-stuff

main

Typical workflow for teams

Sarah

some_code

main

Bob

some_code
bob_working

main

© git

some_code
main

bob_working

6)

GitHub

some_code

feature/james-awesome-stuff

main

Typical workflow for teams

Sarah

some_code

main

Bob

some_code

bob_working

main

6)

some_code GitHub

some_code

feature/james-awesome-stuff

main

git

Typical workflow for teams © git

6)

some_code GitHub

Sarah

some_code

main

Bob

some_code

some_code

feature/james-awesome-stuff

bob_working

main main

Typical workflow for teams

Sarah O

- some_code GitHub

some_code

main

Bob

some_code some_code

feature/james-awesome-stuff

bob_working

main main

Typical workflow for teams

Sarah

some_code

main

Bob

some_code

bob_working

main

© git

some_code

6)

GitHub

some_code

feature/james-awesome-stuff

main

Typical workflow for teams © git

Sarah O

- some_code GitHub

some_code

main

some_code

some_code

bob_working feature/james-awesome-stuff

main main

Typical workflow for teams

Sarah

some_code

main

Bob

some_code

bob_working

main

© git

some_code

6)

GitHub

some_code

feature/james-awesome-stuff

main

© git
GitFlow

O——=0 >0
. \O/ A
(releasel) \ O-0O
(evelop) O-O-O—>0 >

https://docs.ultrazohm.com/general/project_structure/contribution_workflow.html

Task 2: Contribute to an existing repo
https://github.com/jpsbento/git-sandbox

* git clone git@github.com:jpsbento/git-sandbox.git

= t ’ jpsbento / git-sandbox

<> Code (©) Issues 1 Pullrequests () Actions [Projects [0 wiki (@ Security |~ Insights @3 Settings ¢ CIO n e th IS re po Iocal Iy

k‘ git-sandbox Public S7 Pin || & Unwatch 1

e Scenarios:

develop ~ ¥ 4 Branches © 0 Tags Q Gotofile t Add file ~ ° A: Multiple developers Work

l‘ jpsbento Merge pull request #5 from jpsbento/main @@

iz on same branch (merge
E .gitignore I | I 2 days ago CO n fl icts)
LICENSE Initial commit 2 days ago
O resomema i * B: Multiple developers on
O main.py Merge pull request #4 from jpsbento/fe, i hours ago

separate branches
s and merging with PRs

git-sandbox e C: Cherry picking

This is a sandbox repository for the purposes of a git workshop

[0 README & GPL-3.0 license

Git Summary

* It's a distributed VCS, great for collaborative work.

* It's the industry standard, and it's for everyone.

* It is easy to use, once you get used to it. So get used to it!
* Integrates with all systems, IDEs and works everywhere.

* Has one major caveat: It doesn't work well with large files or binary
files.

o DON'T COMMIT A LARGE FILE. Even if you remove it later, the repo will still
have the original version of it.

o Purging a file completely from the repository history is VERY HARD.
o For large file VCS, use either Git-LFS, MLFlow or DVC.

Data Version Control (dvc.org)

Code

e Efficient Handling of Large Files Github, Gitlab, any Git Server

* Reproduce Test Results and Original Remote
Data

* Works alongside Git git push
 Storage Flexibility st st A
* Some basic DevOps knowledge

required Local b

code model.pkl.dve

* Increased Complexity K

D\C

g| e Cloud, SSH

_%

dvc pull i
model.pkl
500MB

0 6 ©

Source Version Infrastructure Provisioning Configuration

Code Control as Code Management

@

R,

Development Virtualization

= D O

= Dev ps

o [
Automation Containerization

TEST MONITOR

®

Continuous Integration/
Quality Continuous Delivery or

Control Deployment (C1/CD) Visualizations Logging

T F! ;\
rﬂG'tL? 0git i\’_\'//S’
s B ri y eOCkQﬂ F@ﬂ

DEPLOY LC HE FJ

Rradle «
= [m =

o

(NN

Q.

o
§Sonatype uNSIBLgJ

= Nexus MONITOR

[]

r kubernetes
A2 @) B)ooe)—
AZGire openstack. graylog
Rsnauhal | RS, % (SrafanaJ{

	Slide 1: Git Workshop
	Slide 2: Version Control Systems
	Slide 3: Which VCS to use?
	Slide 4: What is Git?
	Slide 5: Intro to Git
	Slide 6: Using Git
	Slide 7: Git Concepts
	Slide 8: Git Cheat Sheets
	Slide 9: Typical workflow for individuals
	Slide 10: Task 1: Create a new Github repository
	Slide 11
	Slide 12: Typical workflow for teams
	Slide 13: Typical workflow for teams
	Slide 14: Typical workflow for teams
	Slide 15: Typical workflow for teams
	Slide 16: Typical workflow for teams
	Slide 17: Typical workflow for teams
	Slide 18: Typical workflow for teams
	Slide 19: Typical workflow for teams
	Slide 20: Typical workflow for teams
	Slide 21: Typical workflow for teams
	Slide 22: Typical workflow for teams
	Slide 23: Typical workflow for teams
	Slide 24: Typical workflow for teams
	Slide 25: GitFlow
	Slide 26: Task 2: Contribute to an existing repo https://github.com/jpsbento/git-sandbox
	Slide 27: Git Summary
	Slide 28: Data Version Control (dvc.org)
	Slide 29
	Slide 30

