

UNIVERSITY OF

LIVERPOOL

FIAT LUX

Studying the tracking performance for dark photons with the FASER detector

Sinead Eley

Supervisors: Dr. C. Gwilliam & Prof. M. D'Onofrio

1st Year Presentation

Hidden Sectors

- SM can't explain everything
 - Matter-Antimatter asymmetry
 - Gravity
 - Dark Matter
- Motivation for theories beyond the standard model (BSM)
- Cosmological evidence of dark matter
 - Could be part of a hidden sector known as dark sector
- 4 benchmark approaches which utilise 4 renormalizable 'portals'
 - Each can be defined by the mass of the mediator (m) and their coupling to the SM ($\epsilon)$

Portal	Mediator
Scalar	Dark Higgs
Vector	Dark Photon
Neutrino	Heavy Neutral Lepton (HNL)
Pseudoscalar	Axion-Like Particle (ALP)

FASER

- Forward Search Experiment
- Located in Far Forward Region @ LHC
 - 48om from ATLAS interaction point
 - where weakly-interacting long-lived particles (LLPs) are produced
 - Specifically searching for dark sectors and studying neutrinos
- Started taking data at start of LHC Run 3 (2022)
 - Will continue to take data for remainder of Run 3 and Run 4
 - Collecting ~ 250 fb^{-1} of data during Run 3

FASER

- Forward Search Experiment
- Located in Far Forward Region @ LHC
 - 480m from ATLAS interaction point
 - where weakly-interacting long-lived particles (LLPs) are produced
 - Specifically searching for dark sectors and studying neutrinos
- Started taking data at start of LHC Run 3 (2022)
 - Will continue to take data for remainder of Run 3 and Run 4
 - Collecting ~ 250 fb^{-1} of data during Run 3

Tracking spectrometer

- 3 tracking stations
 - Within a magnetic field of 0.55T
 - 3 layers of double-sided silicon strip modules in each
 - Uses ATLAS SCT modules
 - Maximum of 18 hits in tracking spectrometer

Dark Photons

Tracking @ FASER

• Tracking at FASER uses a combinatorial Kalman Filter (CKF)

Steps of a CKF

Current Default ·

station 1

Tracking starting at

[Forward Tracking]

- 1. Starts from initial track seed
- 2. Considers the branching of the fit at each sensitive surface it encounters
- Measurements selected based on compatibility with current state by using residuals
- 4. Quality selection criteria applied to identify and remove bad candidates
- 5. Implements a scoring function that use properties of track parameters
- 6. Higher score means there is a larger probability that is associated with track of the particle

Alternative Tracking Method : Backtracking

- Starting from tracking station 3 (end of tracker) instead of at front
 - Should be able to reconstruct tracks that are closer together
 - Aims to increase efficiency at low track separation
 - Can be compared to efficiency of forward tracking

Dataset

- In this study:
 - Each sample has 20k events produced
 - All tracks required to be 'Good Tracks'
 - Two tracks with the highest z momentum are selected

Total number of events passing each cut for >=1 Good tracks and ==2 Good Tracks

0.0110^-520000170230.110^-52000018661Forward0.0110^-42000018589	
	12148
Forward 0.0110 ^A -4 20000 18589	
· · · · · · · · · · · · · · · · ·	12428
0.0110 [^] -5 20000 17055	9091
0.110^-5 20000 18476	11320
Backward 0.0110 [^] -4 20000 18672	11513

Worst case will be for low mass and low coupling

- longer lived therefore separation is smaller

Good Tracks

a good quality track has a track fit $\chi 2$ /(number of degrees of freedom) < 25 , at least 12 hits on track, and a momentum > 20 GeV

 $\chi^2 {\rm Per}$ Degree of Freedom [Before selections] Sample with m=0.01 GeV and $\epsilon = 10^{-5}$

Effect on Track Reconstruction at Low Separation

- Requiring events to have only 2 tracks
- Backtracking reconstructs more tracks than forward tracking at separations of less than 10mm
- Ratio (Number of events [Backwards Tracking]/Number of Events [Forwards Tracking]) is consistently over 1
 - Backwards tracking picks up more events than forwards tracking
 - below ~ 7mm upstream [tracking station 1]
 - Below ~20mm downstream [tracking station 3]

Truth Matching

- To fully quantify the overall efficiency and acceptance
 - Need to quantify the fraction of events that are effectively matched to the truth
- Done using 3 methods:
 - Matching by minimum radius between each track and the truth particle
 - Matching by fraction of clusters for each truth particle and associated to the track
 - Matching by charge of track

Efficiency * Acceptance for sample with m=0.01 GeV and $\epsilon = 10^{-5}$

Matchin g By	Tracking Direction	E*A (>=1 Good Tracks) (%)	E*A (==2 Good Tracks) (%)
Fraction	Forward	48	45
of Clusters	Backward	50	44
Charge of Track	Forward	46	43
	Backward	48	43

Efficiency x Acceptance (E*A)

>=1 Good Track:

- $Efficiency \times Acceptance_{\geq 1}$
- Number of Events (Matched to both $e + \& e AND \ge 1$ GoodTracks)

20000(*Total*)

==2 Good Tracks:

 $Efficiency \times Acceptance_{=2}$ Number of Events (Matched to both e +

Number of Events (Matched to both e + & e - AND == 2 GoodTracks)

20000(*Total*)

Conclusion and Future Work

- Preliminary results of backwards tracking are promising
 - Backwards tracking picks up more events than forwards tracking at lower separations
- Finalising the studies of the benefits of backwards tracking
- Implement in the dark photon analysis workflow
- Ideal scenario would be to combine forwards and backwards tracking
 - Currently been explored in the collaboration
- Use the results to improve the tracking for the search for the Dark Higgs
 - Will form the analysis for my thesis

Back Up

- χ^2 per degree of freedom has higher peak at 1 for backwards tracking than forwards tracking
 - Fit of tracks is better in backwards tracking is better by this metric

FASER Tracker

- Utilises silicon strip detectors
 - Back to back at a stereo angle of 40mrad
 - Spatial resolution of 17 μ m in precision coordinate
 - ~580 μ m in non-precision coordinate
- Magnetic field applied in y
 - Charged particles separated in *x*

Truth Matching Efficiencies

Forwards Tracking

Matching By	Mass (GeV)	Coupling	E*A (>=1Good Tracks) (%)	E*A (==2 Good Tracks) (%)
Fraction of Clusters	0.01	10^{-5}	48.405	45.235
	0.1	10^{-5}	69.64	57.05
	0.01	10^{-4}	71.255	58.845
Charge of Track	0.01	10^{-5}	46.71	43.73
	0.1	10^{-5}	57.37	46.345
	0.01	10^{-4}	59.5	48.705

Backwards Tracking

Matching By	Mass (GeV)	Coupling	E*A (>=1 Good Tracks) (%)	E*A (==2 Good Tracks) (%)
Fraction of Clusters	0.01	10 ⁻⁵	50.07	44.41
	0.1	10^{-5}	72.545	51.795
	0.01	10^{-4}	74.33	53.36
Charge of Track	0.01	10^{-5}	48.51	43.04
	0.1	10 ⁻⁵	64.07	45.44
	0.01	10 ⁻⁴	66.21	47.45

Truth Matching by Charge - Back vs Forward [>=1 Good Tracks]

