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Physics motivation of muon g-2/EDM measurement

1. Muon anomalous magnetic moment (g-2)

– 5 σ tension b/w measurement(BNL & FNAL) & prediction from SM (WP).

– This may be contribution from physics beyond the SM.

• However, lattice QCD calculation on HVP contribution is not consistent with the 
dispersive approach.

– From the experimentalist side, independent measurement from FNAL is desirable.

2. Muon electric dipole moment (EDM) 

– EDM and g-2 can be induced by the same new physics. 

– Upper limit given by BNL: 1.8 × 10−19 e ∙ cm (95% C.L.)
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How to measure muon g-2/EDM precisely

• Muon g-2/EDM can be measured from
spin precession of muon in a uniform B-field.

– time dependent spin information reconstructed from
decay positron energy/momentum.

BNL/ FNAL experiment

• Magic gamma approach to cancel out 2nd term.

– p = 3.1 GeV/c 

– muon orbit: φ = 14 m at B = 1.45 T.

• Strong focusing by electric field.
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How to measure muon g-2/EDM precisely

J-PARC experiment

• Measurement at 𝐸 = 0.

– Muons will be stored by weak focusing B-field

– This requires low emittance muon beam
& dedicated beam injection scheme.

• Measurement at lower muon momentum becomes possible.
→ More compact storage region with better uniformity of B-field.

– p = 0.3 GeV/c, φ = 0.66m at B = 3 T

• This leads to the

1. independent measurement of muon g-2
to validate BNL/FNAL result at different systematic uncertainty.

2. clear separation of g-2 and EDM signal. 
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How to measure muon g-2/EDM precisely

J-PARC experiment

• Measurement at 𝐸 = 0.

– Storage by weak focusing B-field

– Utilize low emittance muon beam.
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Experimental setup overview 7

Zoom

Injection

Storage magnet

Positron detector

1. High intensity muon beam from MLF
2. Low emittance beam

by muon cooling & reacceleration.
3. Dedicated beam injection scheme.
4. Quite uniform B-field by MRI-like magnet
5. Compact detector

with high hit rate tolerances
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Expected sensitivity

• Total efficiency of muon
will be 1.3 × 10−5.

Muon g-2

• Statistical uncertainty: 450 ppb (2 years of data taking)
– Uncertainty comparable to BNL can be reached

– Possibility of further improvement under discussion

• Systematic uncertainty: less than 70 ppb.

Muon EDM

• Statistical uncertainty: 1.5 × 10−21 e ∙ cm
– 2 orders of magnitude improvement from upper limit.

• Systematic uncertainty: 0.4 × 10−21 e ∙ cm
– mainly from detector mis-alignment
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Surface μ+ beam at MLF
• MLF H2 beam line.

– Surface μ+ beam: 4MeV with 25Hz rep.

– Beam rate : 1.2×108 muons/s is expected at the Mu production target.

– H2 area was constructed inside the existing MLF bldg.

• A new extension building and beam line: waiting for the budget approval.
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Muon cooling

• Low emittance muon beam will be realized
by reacceleration of thermal muon.

– Silica aerogel target : Surface muons stopped, and thermal muoniums emitted.

– Laser ablated aerogel to increase the efficiency.

• Thermal muonium ionization by laser. 

– Two scheme under consideration.

– 1S-2P excitation by 122nm
or 1S-2S excitation by 244nm
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Muon acceleration

• Muon reacceleration to 300MeV/c by muon LINAC.

– Series of 4 types of cavities depending on the muon β of each stage.
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Acceleration test
with thermal μ planned.

Prototype fabricated
and tested

Fabrication
completed.
High power
test on going

Prototype fabricated
and tested



Muon acceleration test

• Ultraslow muon production and
acceleration was tested in 2024 spring.

– held at MLF S2 line

– 244 nm Ionization laser to utilize 1S-2S
(not 1S-2P) transition

– This test includes Mu ionization,
SOA chamber, and acceleration up to 90keV.
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Demonstration of muon reacceleration

• Muon re-acceleration is demonstrated.

• Reduction of emittance by muon  cooling is demonstrated.
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Time between and laser irradiation hits in MCP



Three-dimensional spiral beam injection

• Low emittance muon beam (300MeV, 0.3π mm-mrad) will be injected into 
compact storage orbit (Bz=3.0T, R=33.3cm),
and stored without electric focusing with good injection efficiency.

Key points

1. Inject low emittance beam
with appropriate X-Y coupling
is injected into solenoid magnet.

– to compensate fringe field felt
by each muon

2. Apply appropriate radial Br-field
(Fringe Br-field + kicker coil Br-field).

– to guide muons to the compact 
region where the uniform
magnetic field is applied.

3. Store muon beam by weak focusing.
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Three-dimensional spiral beam injection

• Design and prototyping of each devices is ongoing.
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Storage beam monitor

Kicker coil prototype

Rotatable QM prototype



Demonstration of beam injection scheme

• Demonstration of beam injection scheme has been performed.

– It uses electron beam,
but on the same concept as real experiment.

• Signal from stored electron beam is successfully observed.
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Storage magnet

• Highly uniform (0.1ppm) magnetic field will be achieved by shimming.

– Compact solenoid magnet based on
MRI magnet technology.

– B-field measurement
by a high precision NMR probe

• Local uniformity of 1ppm is already
demonstrated by the MuSEUM
experiment magnet.

• Field mapping system under design.

– B-field meas. in the muon storage region.

– Theta motion + z motion.
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Field mapping system

Superconducting magnet
for MuSEUM experiment.



Positron tracker

• Silicon detector for momentum measurement of decay positrons.

– High hit rate capability (6 tracks/ns)
and stability over rate changes (1.4 MHz10 kHz) 

– Silicon strip sensor: Hamamatsu S13804, 190um pitch.

– High efficiency for positron in the analysis window (p=200-270 MeV/c).
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Simulated tracks

HPK S13804
- silicon strip detector
- size: 100 x 100mm2,
190um strip 

(φ
=66cm)



Positron tracker

• Major components are in or completed the mass-productions.

• Assembly procedure is under R&D.

• A quarter-vane prototype is under its operation test.
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Sensor alignment for EDM measurement

• Precise alignment between detector and B-field
is essential for muon EDM measurement.

– If rotated each other, “g-2 component” of spin
precession comes into “EDM component”.

• Goal of sensor alignment is 10 μrad (~ 1um) precision.
-> Sensor position/rotation/deformation should be monitored during DAQ.

– This will be achieved by a combination of several methods.
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spin precession
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Track-based alignment
• Sensor position

reconstructed by 
minimization of positron 
track fitting in physic data.

Precise detector assembly
• Sensor position measurement 

by CMM & laser tracker.
• Position alignment by dedicated jig.

Laser-based alignment monitor
• Interferometer with optical 

comb laser.
• Monitor distance between 

fixed points.

Minimize 𝜒2 in the positron track fitting.

𝜒2 = 
𝑡𝑟𝑎𝑐𝑘


𝑝𝑜𝑖𝑛𝑡

(𝑥𝑚𝑒𝑎𝑠 − 𝑥𝑓𝑖𝑡)2

𝜎2



Sensor alignment for EDM measurement

• Silicon sensors are glued on GFRP frame.
Gluing procedure with an alignment of
O(1) um precision is under development.

• CMM (3D coordinate measuring machine)
in temperature control room

– sensor position & shape measurement by 1um precision

– temperature is kept to 20 ± 1 deg. , to avoid thermal expansion. 

• Sensor positioning by a dedicated jig.

– Horizontal shift (1um step)  & Vertical shift (~10 um step)

– Gluing by a UV curing adhesive.
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Temperature control room

Sensor alignment (side view) Sensor alignment jig
sensor hold by vacuum chuck

Vertical shift/ tilt

Horizontal shift/ rotation

frame
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jig
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horizontal shift︓1um precision

vertical shift
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Positron tracker assembly

• We plan to assemble positron tracker in Japan
from 2026.

– at Kyushu Univ, KEK, (likely) J-PARC.

• We are preparing a lab for this.

– Assembly of silicon tracker still seems rather complicated,
and we are welcome for collaborations.
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Dispenser CMM in temperature control room
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for precise sensor alignment
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Possible idea for improvement No.1 26



Possible idea for improvement No.2 27

• Since we are using tracker instead of calorimeter for positron detection, 
reconstruction of positron emission angle at muon rest frame may be possible.

• This enables us to include low momentum positrons for g-2/EDM analysis.

– Factor ~2 improvement is expected for g-2/EDM statistical uncertainty.

• To realize this, we need

1. Detection of low momentum positrons.

• Increase number of silicon sensors

2. Better performance of positron track-back.

• Reduced and/or well understanding of
detector material  budget.

3. Further precise muon beam injection

• to uniquely identify muon decay vertex from
positron track and stored muon orbit.

• This seems to be an interesting possibility,
but there is still a long way to go for its realization.



Possible idea for improvement No.3

• Increasing muon momentum, storage magnetic field will reduce statistical 
uncertainty.

–
𝛿𝜔𝑎

𝜔𝑎
=

1

𝜔𝑎 𝛾 𝜏0

2

𝑁𝐴2 , 𝜔𝑎 = 𝑎
𝑞𝐵

𝑚

– If we modify our design as 300MeV->600MeV, 3T -> 6T,
then statistical uncertainty  will be ~100 ppm.

• This option could be realized, but it needs R&D to judge it.

– Acceleration to 600MeV
: Can be possible, but R&D needed to keep it inside the original building design.

– B field to 6T
: Can be possible,  but iron return yoke may become too heavy.

– Beam injection
: Injection becomes easier by reduced geometrical beam emittance, but it becomes

more difficult by larger fringe field, and relatively less pulsed field.
It is hard to judge which affects a lot.
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Summary

• Muon g-2/EDM experiment at J-PARC aims to perform an an independent 
measurement  of muon g-2/EDM.
This will be realized by utilizing low emittance muon beam stored in a compact 
region with a uniform B-field only by weak focusing magnetic field.

• We aim to start commissioning from JFY 2029. 
After 2 years of data taking,

– muon g-2 measurement at 450ppb (stat.) and 70ppb (syst.)
: statistics comparable to BNL, completely different source of systematics

– muon EDM sensitivity at 1.5 × 10−21 e ∙ cm (stat.)
: 2 orders of magnitude improvement.

• All the key technology of this experiment (surface muon, muon cooling, reacceleration, 

injection, uniform B-field, positron tracker) are getting ready for realization.

• Possible ways to improve statistical uncertainty is also under consideration.
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Extension building

• A new extension building will be constructed.

– Construction of extension bldg. is also ready, and waiting for the budget approval.
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Storage
magnet

Main 𝐵𝑧 = 3 T
+ weak focus field 
(𝐵𝑟 = −𝑛

𝐵0𝑧

𝑅
𝑧, 𝑛 = 1.5 × 10−4)

X-Y coupled μ beam
injected with pitch angle

Pulsed Br field by kicker coil
Br ∝ sin Τ2πt T

(for 0 < t <
T

2
, T = 240 ns)

Rotatable quadrupole 
magnet x7

Double bend achromat

μ beam 
from LINAC

iron yoke tunnel

Storage beam monitor

Beam profile monitor

Fringe Br field by main solenoid
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Storage beam monitor 37

Z = ±200mm

Φ0.2mm fibers with 20mm interval.
In total 21 fibers. 
(many room for layout optimization)

read out by SiPMs. record
waveforms by FADC.

• Beam profile monitor installed on storage orbit.

• Beam profile monitor made by thin scintillating fibers 
(φ=0.2mm) read out by SiPMs.

• Low mass detector
with low occupancy (1%).

– to prevent multiple scattering

• Prototype is being tested
in injection test bench.

muon

Placed on
beam storage orbit
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