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We determine the contribution to the anomalous magnetic moment of the muon from the ↵2
QED

hadronic vacuum polarization diagram using full lattice QCD and including u/d quarks with physical
masses for the first time. We use gluon field configurations that include u, d, s and c quarks in the
sea at multiple values of the lattice spacing, multiple u/d masses and multiple volumes that allow us
to include an analysis of finite-volume e↵ects. We obtain a result for aHVP,LO

µ of 667(6)(12)⇥ 10�10,
where the first error is from the lattice calculation and the second includes systematic errors from
missing QED and isospin-breaking e↵ects and from quark-line disconnected diagrams. Our result
implies a discrepancy between the experimental determination of aµ and the Standard Model of 3�.

I. INTRODUCTION

The muon’s gyromagnetic ratio gµ is known ex-
perimentally with extremely high accuracy: its mag-
netic anomaly, aµ ⌘ (gµ � 2)/2, has been measured
to 0.5 ppm [1] and a new experiment aims to reduce that
uncertainty to 0.14 ppm [2]. By comparing these results
with Standard Model predictions, we can use the muon’s
anomaly to search for indirect evidence of new physics
beyond the mass range directly accessible at the Large
Hadron Collider. There are tantalizing hints of a discrep-
ancy between theory and experiment — the di↵erence is
currently 2.2(7) ppm [3] — but more precision is needed.
In particular the Standard Model prediction, which cur-
rently is known to about 0.4 ppm [3], must be substan-
tially improved in order to match the expected improve-
ment from experiment.

The largest theoretical uncertainty in aµ comes from
the vacuum polarization of hadronic matter (quarks and
gluons) as illustrated in Figure 1. This contribution
has been estimated to a little better than 1% (which
is 0.6 ppm of aµ) from experimental data on e+e�

!

hadrons and ⌧ decay [4–8], but much recent work [9–
18] has focused on a completely di↵erent approach, us-
ing Monte Carlo simulations of lattice QCD [19], which
promises to deliver smaller errors in the future.

In an earlier paper [14], we introduced a new technique
for the lattice QCD analyses that allowed us to calculate
the s quark’s vacuum-polarization contribution from Fig-
ure 1 with a precision of 1% for the first time. Here we
extend that analysis to the much more important (and
di�cult to analyze) case of u and d quarks, allowing us to
obtain the complete contribution from hadronic vacuum
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FIG. 1: The ↵2
QED hadronic vacuum polarization contribu-

tion to the muon anomalous magnetic moment is represented
as a shaded blob inserted into the photon propagator (rep-
resented by a wavy line) that corrects the point-like photon-
muon coupling at the top of the diagram.

polarization at ↵2
QED

. We achieve a precision of 2%, for
the first time from lattice QCD. A large part of our un-
certainty is from QED, isospin breaking and quark-line
disconnected e↵ects that were not included in the simu-
lations, but will be in future simulations. The remaining
systematic errors add up to only 1%. A detailed analysis
of these systematic errors allows us to map out a strat-
egy for reducing lattice QCD errors well below 1% using
computing resources that are substantial but currently
available.

II. LATTICE QCD CALCULATION

Almost all of the hadronic vacuum polarization contri-
bution (HVP) comes from connected diagrams with the
structure shown in Figure 1: the photon creates a quark
and antiquark which propagate, while interacting with
each other, and eventually annihilate back into a pho-
ton. Here we analyze the case where the photon creates

ar
X

iv
:1

60
1.

03
07

1v
2 

 [h
ep

-la
t] 

 2
8 

M
ay

 2
01

7

Davide 
Giusti



Introduction



Muon magnetic anomaly

3

A. El-Khadra Aspen Winter, 25-31 March 2018

Introduction

3

muon anomalous magnetic moment: 
  

is generated by quantum effects (loops).  
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is a sensitive probe of new physics.
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Table 4.4 The eighth-order mass-dependent QED contribution from 11 gauge-invariant groups to
muon g − 2 [46], whose representatives are shown in Fig. 4.5. The mass-dependence of A(8)

3µ is

A(8)
3µ (mµ/me,mµ/mτ )

Group A(8)
2µ (mµ/me) A(8)

2µ (mµ/mτ ) A(8)
3µ

I(a) 7.74547 (42) 0.000032 (0) 0.003209 (0)

I(b) 7.58201 (71) 0.000252 (0) 0.002611 (0)

I(c) 1.624307 (40) 0.000737 (0) 0.001811 (0)

I(d) −0.22982 (37) 0.000368 (0) 0.000000 (0)

II(a) −2.77888 (38) −0.007329 (1) 0.000000 (0)

II(b) −4.55277 (30) −0.002036 (0) −0.009008 (1)

II(c) −9.34180 (83) −0.005246 (1) −0.019642 (2)

III 10.7934 (27) 0.04504 (14) 0

IV(a) 123.78551 (44) 0.038513 (11) 0.083739 (36)

IV(b) −0.4170 (37) 0.006106 (31) 0

IV(c) 2.9072 (44) −0.01823 (11) 0

IV(d) −4.43243 (58) −0.015868 (37) 0

Sum 132.6852 (65) 0.04234 (10) 0.06272 (4)

(18) (18) (2072) (120) (18) (2)

Fig. 4.11 Some typical tenth order contributions to a! including fermion loops. In brackets the
number of diagrams of the given type

4.1.5 Five–Loop QED Contribution

Here the number of diagrams (see Fig. 4.11) is in the 10 000. Alone the universal A(10)
1

term has contributions from 12 672 diagrams. The latter are grouped into six gauge-
invariant sets I–VI, which are further subdivided into 32 gauge-invariant subsets
depending on the type of lepton loops involved. Set V is the set without closed
lepton loops. It is the largest and most difficult set to evaluate consisting of 6354
diagrams, and has been accurately evaluated only recently by Aoyama et al. [48].
The 31 sets with closed lepton loops consist of 6318 vertex diagrams and have
been presented in Refs. [76–85]. The results of all ten subsets of Set I have been
confirmed by Ref. [86, 87] by analytic and/or semi-analytic methods (see Table4.10).
The five-loop contribution originally was evaluated using renormalization group
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Table 5.7 Higher order contributions from diagrams (a)–(c) (in units 10−11)

a(2a)µ a(2b)µ a(2c)µ ahad(2)µ Ref.

–199 (4) 107 (3) 2.3 (0.6) –90 (5) [108]

–211 (5) 107 (2) 2.7 (0.1) –101 (6) [202]

–209 (4) 106 (2) 2.7 (1.0) –100 (5) [11]

–207.3 (1.9) 106.0 (0.9) 3.4 (0.1) –98 (1) [117]

–207.5 (2.0) 104.2 (0.9) 3.0 (0.1) –100.3 (2.2) [15]

–206.13 (1.30) 103.49 (0.63) 3.37 (0.05) –99.27 (0.67) [6, 88]

(a) 3a (b) 3b (c) 3b (d) 3c

(e) 3c (f) 3c (g) 3b,lbl (h) 3d

Fig. 5.45 A sample of leading NNLO hadronic vacuum polarization diagrams

FSR, the latter is included already in the data and no additional contribution has to
be taken into account. In more recent analyses this contribution is usually included
in the leading hadronic contribution (5.29) as the π+π−γ channel (see Table5.3).

Results obtained by different groups, for so far unaccounted higher order vacuum
polarization effects, are collected in Table5.7. We will adopt the estimate

ahad(2)µ = (−99.27± 0.67) × 10−11 (5.132)

obtained with the compilation [16]. For the electron only group (2a) yields a signif-
icant contribution [202]: a(2a)e = −0.2210(12) × 10−11.

5.1.13 Next-to-Next Leading Order Hadronic Contributions

Recently the next-to-next-to-leading order (NNLO), O(α4), HVP contributions have
been evaluated for the first time by [206–208] (see also [209]). The relevant kernels
have been calculated by appropriate asymptotic expansion methods. The kernels
have been calculated for the following groups of diagrams displayed in Fig. 5.45:

• K(3a): one hadronic insertion; up to two additional photons to the LO Feynman
diagram; contains also the contributions with one or two closed muon loops and
the light-by-light-type diagram with a closed muon loop.
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Fig. 4.19 Some of the relevant electroweak two–loop diagrams exhibiting closed fermion loops
in the unitary gauge, f = (νe, νµ, ντ , ) e,µ, τ , u, c, t, d, s, b with weak doublet partners f ′ =
(e,µ, τ , ) νe, νµ, ντ , d, s, b, u, c, t of course the neutrinos (in brackets) do not couple directly to
the photon and hence are absent in the triangular subgraphs

γWW amplitudes do not vanish. In fact for the γWW triangle charge conservation
only allows one orientation of the fermion loop.

Diagrams (a) and (b), with an internal photon, appear enhanced by a large loga-
rithm. In fact the lepton loops contributing to the γγZ vertex lead to corrections

a(4) EW
µ ([ f ]) "

√
2Gµ m2

µ

16π2

α

π
2T3 f Ncf Q2

f

[
3 ln

M2
Z

m2
f ′
+ C f

]
(4.51)

in which m f ′ = mµ if m f ≤ mµ and m f ′ = m f if m f > mµ and

C f =






5/2 for m f < mµ

11/6 − 8/9 π2 for m f = mµ

−6 for m f > mµ .

For an individual fermion f the contribution is proportional to Ncf Q2
f a f . In [144]

only lepton loops were taken into account, and it is well known that the triangular
subdiagram has an Adler–Bell–Jackiw (ABJ) or VVA anomaly [145], which cancels
if all fermions are included. The anomaly cancellation is mandatory in a renormal-
izable theory and it forces the fermions in the SM to come in families of leptons
and quarks [146]. The latter compensate the anomaly of the former. The cancellation
condition of the SM reads

∑
f
Ncf Q2

f a f = 0 , (4.52)

and such a cancellation is expected also for the leading short distance logarithms
proportional to ln MZ and in fact this has been checked to happen on the level of the
quark parton model (QPM) for the 1st and 2nd fermion family [147, 148].

Assuming dressed constituent quarks masses Mu,Md > mµ, the QPM result for
the first family reads [148]

420 5 Hadronic Effects

on the expense of an extra contribution from the circle. In [196] p(s) is chosen to be
of the form p(s) = a + b s and on the circle Π̂ ′

γ(s)||s|=s1 is approximated byΠOPE(s)
which is proportional to (5.22) (see Sect. 5.1.6): e2 ΠOPE(s) = Π ′NP

γ (s = −Q2). By
this the available information on R(s) in the interval I gets erased (suppressed by a
factor 2.5) and gets transported onto the circle as a weight factor which multiplies
ΠOPE, a quantity which is not well determined as we learn from Fig. 5.18 and the
discussion there. Even so the information on R(s) in the interval I is unsatisfactory,
it is hard to belief that suppressing the available true information at the end should
provide a more reliable estimate of ahad,LOµ (s1).

5.1.12 Hadronic Higher Order Contributions

At next-to-leading (NLO) order, O(α3), there are several classes of hadronic con-
tributions with typical diagrams shown in Fig. 5.43. They have been estimated first
in [105]. Classes (a) to (c) involve leading HVP insertions and may be treated using
DRs together with experimental e+e−–annihilation data. Class (d) involves lead-
ing QED corrections of the charged hadrons and related problems were discussed
at the end of Sect. 5.1.7 on p. 379, already. The last class (e) is a new class of
non–perturbative contributions, the hadronic light–by–light scatteringwhich is con-
strained by experimental data only for one exceptional line of phase space. The
evaluation of this contribution is particularly difficult and it will be discussed in the
next section.

The O(α3) hadronic contributions from classes (a), (b) and (c) may be evaluated
without particular problems as described in the following.

At the three–loop level all diagrams of Fig. 4.3 which involve closed muon–loops
are contributing to the hadronic corrections when at least one muon–loop is replaced
by a quark–loop dressed by strong interactions mediated by virtual gluons.

(a) (b) (c)

(d) (e)

Fig. 5.43 Hadronic higher order contributions: a–c involving LO vacuum polarization, d involving
HO vacuum polarization and e involving light-by-light scattering
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muon g − 2 [46], whose representatives are shown in Fig. 4.5. The mass-dependence of A(8)

3µ is
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2µ (mµ/me) A(8)
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Fig. 4.11 Some typical tenth order contributions to a! including fermion loops. In brackets the
number of diagrams of the given type

4.1.5 Five–Loop QED Contribution

Here the number of diagrams (see Fig. 4.11) is in the 10 000. Alone the universal A(10)
1

term has contributions from 12 672 diagrams. The latter are grouped into six gauge-
invariant sets I–VI, which are further subdivided into 32 gauge-invariant subsets
depending on the type of lepton loops involved. Set V is the set without closed
lepton loops. It is the largest and most difficult set to evaluate consisting of 6354
diagrams, and has been accurately evaluated only recently by Aoyama et al. [48].
The 31 sets with closed lepton loops consist of 6318 vertex diagrams and have
been presented in Refs. [76–85]. The results of all ten subsets of Set I have been
confirmed by Ref. [86, 87] by analytic and/or semi-analytic methods (see Table4.10).
The five-loop contribution originally was evaluated using renormalization group
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Table 5.7 Higher order contributions from diagrams (a)–(c) (in units 10−11)

a(2a)µ a(2b)µ a(2c)µ ahad(2)µ Ref.

–199 (4) 107 (3) 2.3 (0.6) –90 (5) [108]

–211 (5) 107 (2) 2.7 (0.1) –101 (6) [202]

–209 (4) 106 (2) 2.7 (1.0) –100 (5) [11]

–207.3 (1.9) 106.0 (0.9) 3.4 (0.1) –98 (1) [117]

–207.5 (2.0) 104.2 (0.9) 3.0 (0.1) –100.3 (2.2) [15]

–206.13 (1.30) 103.49 (0.63) 3.37 (0.05) –99.27 (0.67) [6, 88]

(a) 3a (b) 3b (c) 3b (d) 3c

(e) 3c (f) 3c (g) 3b,lbl (h) 3d

Fig. 5.45 A sample of leading NNLO hadronic vacuum polarization diagrams

FSR, the latter is included already in the data and no additional contribution has to
be taken into account. In more recent analyses this contribution is usually included
in the leading hadronic contribution (5.29) as the π+π−γ channel (see Table5.3).

Results obtained by different groups, for so far unaccounted higher order vacuum
polarization effects, are collected in Table5.7. We will adopt the estimate

ahad(2)µ = (−99.27± 0.67) × 10−11 (5.132)

obtained with the compilation [16]. For the electron only group (2a) yields a signif-
icant contribution [202]: a(2a)e = −0.2210(12) × 10−11.

5.1.13 Next-to-Next Leading Order Hadronic Contributions

Recently the next-to-next-to-leading order (NNLO), O(α4), HVP contributions have
been evaluated for the first time by [206–208] (see also [209]). The relevant kernels
have been calculated by appropriate asymptotic expansion methods. The kernels
have been calculated for the following groups of diagrams displayed in Fig. 5.45:

• K(3a): one hadronic insertion; up to two additional photons to the LO Feynman
diagram; contains also the contributions with one or two closed muon loops and
the light-by-light-type diagram with a closed muon loop.
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in the unitary gauge, f = (νe, νµ, ντ , ) e,µ, τ , u, c, t, d, s, b with weak doublet partners f ′ =
(e,µ, τ , ) νe, νµ, ντ , d, s, b, u, c, t of course the neutrinos (in brackets) do not couple directly to
the photon and hence are absent in the triangular subgraphs

γWW amplitudes do not vanish. In fact for the γWW triangle charge conservation
only allows one orientation of the fermion loop.

Diagrams (a) and (b), with an internal photon, appear enhanced by a large loga-
rithm. In fact the lepton loops contributing to the γγZ vertex lead to corrections

a(4) EW
µ ([ f ]) "

√
2Gµ m2

µ

16π2

α

π
2T3 f Ncf Q2

f

[
3 ln

M2
Z

m2
f ′
+ C f

]
(4.51)

in which m f ′ = mµ if m f ≤ mµ and m f ′ = m f if m f > mµ and

C f =






5/2 for m f < mµ

11/6 − 8/9 π2 for m f = mµ

−6 for m f > mµ .

For an individual fermion f the contribution is proportional to Ncf Q2
f a f . In [144]

only lepton loops were taken into account, and it is well known that the triangular
subdiagram has an Adler–Bell–Jackiw (ABJ) or VVA anomaly [145], which cancels
if all fermions are included. The anomaly cancellation is mandatory in a renormal-
izable theory and it forces the fermions in the SM to come in families of leptons
and quarks [146]. The latter compensate the anomaly of the former. The cancellation
condition of the SM reads

∑
f
Ncf Q2

f a f = 0 , (4.52)

and such a cancellation is expected also for the leading short distance logarithms
proportional to ln MZ and in fact this has been checked to happen on the level of the
quark parton model (QPM) for the 1st and 2nd fermion family [147, 148].

Assuming dressed constituent quarks masses Mu,Md > mµ, the QPM result for
the first family reads [148]
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11 658 471.8931(104)
15.36(10)

693.1(4.0)
-9.83(7)
1.24(1)
9.2(1.8)

6

Run !a/2⇡ [Hz] !̃
0
p/2⇡ [Hz] R0

µ ⇥ 1000
Run-1 3.7073004(17)
Run-2 229077.408(79) 61790875.0(3.3) 3.7073016(13)
Run-3a 229077.591(68) 61790957.5(3.3) 3.7072996(11)
Run-3b 229077.81(11) 61790962.3(3.3) 3.7073029(18)
Run-2/3 3.70730088(79)
Run-1/2/3 3.70730082(75)

TABLE II. Measurements of !a, !̃
0
p, and their ratios R0

µ mul-
tiplied by 1000. The Run-1 value has been updated from [1]
as described in the text.

a recent lattice calculation of HVP by the BMW Col-
laboration [45] shows significant tension with the e

+
e
�

data. In addition, a new preliminary measurement of
the e+e� ! ⇡

+
⇡
� cross section from the CMD-3 experi-

ment [46] disagrees significantly with all other e+e� data.
There are ongoing e↵orts to clarify the current theoretical
situation [47]. While a comparison between the Fermilab
result from Run-1/2/3 presented here, aµ(FNAL), and
the 2020 prediction yields a discrepancy of 5.0�, an up-
dated prediction considering all available data will likely
yield a smaller and less significant discrepancy.

In summary, we report a measurement of the muon
magnetic anomaly to 0.20 ppm precision using our first
three years of data. This is the most precise determi-
nation of this quantity, and it improves on our previous
result by more than a factor of 2. Analysis of the remain-
ing data from three additional years of data collection is
underway and is expected to lead to another factor of 2
improvement in statistical precision.

FIG. 3. Experimental values of aµ from BNL E821 [8], our
Run-1 result [1], this measurement, the combined Fermilab re-
sult, and the new experimental average. The inner tick marks
indicate the statistical contribution to the total uncertainties.
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Hadronic contributionsHadronic contributions to aµ: quark and gluon loops

aexp
µ � aQED

µ � aEW
µ = 718.9(4.1)⇥ 10�10 ?

= ahad
µ

Clearly right order of magnitude:

ahad
µ = O
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✓
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M⇢
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!

= O
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10�7
⌘

�
already Gourdin & de Rafael ’69 found ahad

µ = 650(50)⇥ 10�10�

Huge challenge: theory of strong interaction between quarks and gluons, QCD,
hugely nonlinear at energies relevant for aµ

! perturbative methods used for electromagnetic and weak interactions do not work
! need nonperturbative approaches

Write
ahad
µ = aLO-HVP

µ + aHO-HVP
µ + aHLbyL

µ + O
✓⇣↵

⇡

⌘4
◆

Laurent Lellouch Wits ICPP iThemba Labs seminar in Particle Physics, 21 July 2021

4



5

Hadronic contributions: diagramsHadronic contributions to aµ: diagrams
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Hadronic light-by-lightHadronic light-by-light

µ(p)

�(k) k�

had + 5 permutations of the qi

µ(p�)

q1µq2⌫
q3�

HLbL much more complicated than HVP, but ultimate
precision needed is ' 10% instead of ' 0.2%

For many years, only accessible to models of QCD w/
difficult to estimate systematics (Prades et al ’09):
aHLbL
µ = 10.5(2.6)⇥ 10�10

Also, lattice QCD calculations were exploratory and incomplete

Tremendous progress in past 5 years:

! Phenomenology: rigorous data
driven approach [Colangelo, Hoferichter, Kubis,

Procura, Stoffer,. . . ’15-’20]

! Lattice: first two solid lattice
calculations

All agree w/ older model results but error
estimate much more solid and will improve

Agreed upon average w/ NLO HLbL and
conservative error estimates [WP ’20]

aexp
µ � aQED

µ � aEW
µ � aHLbL

µ =

709.7(4.5)⇥ 10�10 ?
= aHVP

µ [Colangelo ’21]
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FIG. 11. Comparison of our result with values in the lit-
erature. The hadronic model values are from Refs. [26–29].
The dispersive data driven result is compiled in Ref. [5]. The
lattice results include Refs. [24, 48, 49] and this work.

The comparison is summarized in Table VIII. We can see
that the results for both the connected and disconnected
diagrams are in good agreement. For the total, the cur-
rent result is 1.12 standard deviations higher than the
previous results, possibly due to a slightly larger statis-
tical fluctuation. We also compare the final result in this
work with the existing literature in Fig. 11. The new
result is consistent with previous determinations.
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Appendix A: Notation

We use Sµ and G to denote free muon and photon
propagators:

Sµ(x, y) =
⁄

d
4
p

(2fi)4

1
i ”p + m

e
ip·(x≠y) (A1)

= (≠”ˆx + m)
⁄

d
4
p

(2fi)4

1
p2 + m2

e
ip·(x≠y)

, (A2)

G(x, y) =
⁄

d
4
p

(2fi)4

1
p2

e
ip·(x≠y) (A3)

= 1
4fi2

1
(x ≠ y)2

. (A4)

The “µ matrices satisfy the Euclidean space-time metric

“µ“‹ + “‹“µ = 2”µ,‹ . (A5)

Appendix B: fi0 long-distance contribution

In Eq. (42), we replaced the QCD, Euclidean space-
time, four-current connected Green’s function with the
product of two amplitudes, each coupling a pair of cur-
rents to an on-shell fi

0. These two amplitudes are joined
by a pion propagator and all amplitudes are expressed
in position space, so they can be directly inserted in our
standard position-space evaluation of the HLbL ampli-
tude. Since the final expression involves two indepen-
dent factors evaluating the fi““ coupling which are con-
nected by an analytic, position-space pion propagator,
this QCD part of the HLbL amplitude can be evaluated
in a “QCD volume” of arbitrary size. In particular, this
volume could be much larger than that of the gauge con-
figurations used to compute each fi““ vertex function.
Here we work out a concrete derivation of this formula
that can be used to evaluate the long-distance part of the
fi

0 exchange contribution to leading order in 1/L. We
leave open the possibility that this approach could be
developed further to systematically capture terms falling
with higher powers of 1/L if the large volume fi

0 con-
tribution is expressed as a power series in 1/L

n where

[Blum et al ’23]

aHLbL
μ = 12.6(1.2) × 10−10

BMWc ’24 - preliminaryNEW
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Lattice QCD

Discretise QCD onto 4D space-time lattice

QCD equations           integrals over the values of quark and 
gluon fields on each site/link (QCD path integral)

~1012 variables (for state-of-the-art)

Lattice QCD

Evaluate by importance 
sampling
Paths near classical action 
dominate
Calculate physics on a set 
(ensemble) of samples of 
the quark and gluon fields

x

tt0 t1 t2 tn

xA

xB

Numerical first-principles approach to  
non-perturbative QCD

9
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Euclidean space-time
Finite lattice spacing
Volume
Boundary conditions

Lattice QCD

hOi =
1

Z

Z
DAD D O[A,  ]e�S[A,  ]

hOi '
1

Nconf

NconfX

i

O([U i])

Approximate the QCD path integral by Monte Carlo

with field configurations        distributed according toU i e�S[U ]

t ! i⌧

a

L3 ⇥ T = 643 ⇥ 128
<latexit sha1_base64="0dpqOutRXvTB/DyVZk93zeWz8cA=">AAACBnicdVDLSsNAFJ3UV62vqEsRBovgKiRpaOtCKLpx4aJCH0Kblsl02g6dPJiZCCV05cZfceNCEbd+gzv/xkkbQUUPDJx7zr3cuceLGBXSND+03NLyyupafr2wsbm1vaPv7rVEGHNMmjhkIb/xkCCMBqQpqWTkJuIE+R4jbW9ykfrtW8IFDYOGnEbE9dEooEOKkVRSXz+86pW6kvpEwAY8g2WnV4JZbdnVvl40jdNq2XbK0DRMs2LZVkrsilNyoKWUFEWQod7X37uDEMc+CSRmSIiOZUbSTRCXFDMyK3RjQSKEJ2hEOooGSC1yk/kZM3islAEchly9QMK5+n0iQb4QU99TnT6SY/HbS8W/vE4sh1U3oUEUSxLgxaJhzKAMYZoJHFBOsGRTRRDmVP0V4jHiCEuVXEGF8HUp/J+0bMMyDevaKdbOszjy4AAcgRNggQqogUtQB02AwR14AE/gWbvXHrUX7XXRmtOymX3wA9rbJ6cilq8=</latexit><latexit sha1_base64="0dpqOutRXvTB/DyVZk93zeWz8cA=">AAACBnicdVDLSsNAFJ3UV62vqEsRBovgKiRpaOtCKLpx4aJCH0Kblsl02g6dPJiZCCV05cZfceNCEbd+gzv/xkkbQUUPDJx7zr3cuceLGBXSND+03NLyyupafr2wsbm1vaPv7rVEGHNMmjhkIb/xkCCMBqQpqWTkJuIE+R4jbW9ykfrtW8IFDYOGnEbE9dEooEOKkVRSXz+86pW6kvpEwAY8g2WnV4JZbdnVvl40jdNq2XbK0DRMs2LZVkrsilNyoKWUFEWQod7X37uDEMc+CSRmSIiOZUbSTRCXFDMyK3RjQSKEJ2hEOooGSC1yk/kZM3islAEchly9QMK5+n0iQb4QU99TnT6SY/HbS8W/vE4sh1U3oUEUSxLgxaJhzKAMYZoJHFBOsGRTRRDmVP0V4jHiCEuVXEGF8HUp/J+0bMMyDevaKdbOszjy4AAcgRNggQqogUtQB02AwR14AE/gWbvXHrUX7XXRmtOymX3wA9rbJ6cilq8=</latexit><latexit sha1_base64="0dpqOutRXvTB/DyVZk93zeWz8cA=">AAACBnicdVDLSsNAFJ3UV62vqEsRBovgKiRpaOtCKLpx4aJCH0Kblsl02g6dPJiZCCV05cZfceNCEbd+gzv/xkkbQUUPDJx7zr3cuceLGBXSND+03NLyyupafr2wsbm1vaPv7rVEGHNMmjhkIb/xkCCMBqQpqWTkJuIE+R4jbW9ykfrtW8IFDYOGnEbE9dEooEOKkVRSXz+86pW6kvpEwAY8g2WnV4JZbdnVvl40jdNq2XbK0DRMs2LZVkrsilNyoKWUFEWQod7X37uDEMc+CSRmSIiOZUbSTRCXFDMyK3RjQSKEJ2hEOooGSC1yk/kZM3islAEchly9QMK5+n0iQb4QU99TnT6SY/HbS8W/vE4sh1U3oUEUSxLgxaJhzKAMYZoJHFBOsGRTRRDmVP0V4jHiCEuVXEGF8HUp/J+0bMMyDevaKdbOszjy4AAcgRNggQqogUtQB02AwR14AE/gWbvXHrUX7XXRmtOymX3wA9rbJ6cilq8=</latexit><latexit sha1_base64="0dpqOutRXvTB/DyVZk93zeWz8cA=">AAACBnicdVDLSsNAFJ3UV62vqEsRBovgKiRpaOtCKLpx4aJCH0Kblsl02g6dPJiZCCV05cZfceNCEbd+gzv/xkkbQUUPDJx7zr3cuceLGBXSND+03NLyyupafr2wsbm1vaPv7rVEGHNMmjhkIb/xkCCMBqQpqWTkJuIE+R4jbW9ykfrtW8IFDYOGnEbE9dEooEOKkVRSXz+86pW6kvpEwAY8g2WnV4JZbdnVvl40jdNq2XbK0DRMs2LZVkrsilNyoKWUFEWQod7X37uDEMc+CSRmSIiOZUbSTRCXFDMyK3RjQSKEJ2hEOooGSC1yk/kZM3islAEchly9QMK5+n0iQb4QU99TnT6SY/HbS8W/vE4sh1U3oUEUSxLgxaJhzKAMYZoJHFBOsGRTRRDmVP0V4jHiCEuVXEGF8HUp/J+0bMMyDevaKdbOszjy4AAcgRNggQqogUtQB02AwR14AE/gWbvXHrUX7XXRmtOymX3wA9rbJ6cilq8=</latexit>

Numerical first-principles approach to  
non-perturbative QCD
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Primary Objective

To develop first principles predictive capabilities for nuclear physics.

This will occur either by direct calculation or, more likely, 
by providing input into nuclear many-body calculations that cannot be obtained experimentally. 

e.g., multi-neutron forces, hyperon-nucleon, hyperon-hyperon interactions

• First step is verification of technology/method by precision comparisons with experiment.
• Second step is to make predictions for quantities that are followed up/verified by experiment
• Third step is predictions for important quantities that cannot be accessed experimentally (on 

appropriate time-scales).

Lattice QCD is the only known way to rigorously solve QCD without 
any uncontrolled assumptions.  Peta-scale computational resources 
will soon become available for such calculations.  
This will be a turning point for nuclear theory.
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Workflow of a lattice QCD calculation

Lattice QCD

Generate field configurations 
via Hybrid Monte Carlo

Leadership-class computing

~100K cores or 1000GPUs, 10’s of  TF-years

O(100-1000) configurations, each ~10-100GB

Compute propagators
Large sparse matrix inversion

~few 100s GPUs

10x field config in size, many per config

Contract into 
correlation functions

~few GPUs

O(100k-1M) copies 

1

2 3

Computational cost grows exponentially with size of nuclear system 

Small interlude - Lattice QCD

I Simulate QFT in terms of fundamental quarks and gluons
(QCD) on a supercomputer with discretized four-dimensional
space-time lattice

I Hadrons are emergent phenomena of statistical average over
background gluon configurations to which quarks are coupled

I In this framework draw diagrams only with respect to quarks,
photons, and leptons; gluons and their e↵ects are generated
by the statistical average.

Lattice QCD action density, Leinweber, CSSM,
Adelaide, 2003
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Hadrons are emergent phenomena 
of statistical average over 

background gluon configurations

1 year on supercomputer
 100k years on laptop ∼
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HVP = 4α em
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The hadronic vacuum polarization contribution to aµ from full lattice QCD

Bipasha Chakraborty,1 C. T. H. Davies,1, ⇤ P. G. de Oliveira,1 J. Koponen,1 and G. P. Lepage2

(HPQCD collaboration), †

R. S. Van de Water3

1SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
2Laboratory for Elementary-Particle Physics, Cornell University, Ithaca, New York 14853, USA

3Fermi National Accelerator Laboratory, Batavia, IL, USA
(Dated: May 30, 2017)

We determine the contribution to the anomalous magnetic moment of the muon from the ↵2
QED

hadronic vacuum polarization diagram using full lattice QCD and including u/d quarks with physical
masses for the first time. We use gluon field configurations that include u, d, s and c quarks in the
sea at multiple values of the lattice spacing, multiple u/d masses and multiple volumes that allow us
to include an analysis of finite-volume e↵ects. We obtain a result for aHVP,LO

µ of 667(6)(12)⇥ 10�10,
where the first error is from the lattice calculation and the second includes systematic errors from
missing QED and isospin-breaking e↵ects and from quark-line disconnected diagrams. Our result
implies a discrepancy between the experimental determination of aµ and the Standard Model of 3�.

I. INTRODUCTION

The muon’s gyromagnetic ratio gµ is known ex-
perimentally with extremely high accuracy: its mag-
netic anomaly, aµ ⌘ (gµ � 2)/2, has been measured
to 0.5 ppm [1] and a new experiment aims to reduce that
uncertainty to 0.14 ppm [2]. By comparing these results
with Standard Model predictions, we can use the muon’s
anomaly to search for indirect evidence of new physics
beyond the mass range directly accessible at the Large
Hadron Collider. There are tantalizing hints of a discrep-
ancy between theory and experiment — the di↵erence is
currently 2.2(7) ppm [3] — but more precision is needed.
In particular the Standard Model prediction, which cur-
rently is known to about 0.4 ppm [3], must be substan-
tially improved in order to match the expected improve-
ment from experiment.

The largest theoretical uncertainty in aµ comes from
the vacuum polarization of hadronic matter (quarks and
gluons) as illustrated in Figure 1. This contribution
has been estimated to a little better than 1% (which
is 0.6 ppm of aµ) from experimental data on e+e�

!

hadrons and ⌧ decay [4–8], but much recent work [9–
18] has focused on a completely di↵erent approach, us-
ing Monte Carlo simulations of lattice QCD [19], which
promises to deliver smaller errors in the future.

In an earlier paper [14], we introduced a new technique
for the lattice QCD analyses that allowed us to calculate
the s quark’s vacuum-polarization contribution from Fig-
ure 1 with a precision of 1% for the first time. Here we
extend that analysis to the much more important (and
di�cult to analyze) case of u and d quarks, allowing us to
obtain the complete contribution from hadronic vacuum

⇤christine.davies@glasgow.ac.uk
†URL: http://www.physics.gla.ac.uk/HPQCD

µ
q

q

FIG. 1: The ↵2
QED hadronic vacuum polarization contribu-

tion to the muon anomalous magnetic moment is represented
as a shaded blob inserted into the photon propagator (rep-
resented by a wavy line) that corrects the point-like photon-
muon coupling at the top of the diagram.

polarization at ↵2
QED

. We achieve a precision of 2%, for
the first time from lattice QCD. A large part of our un-
certainty is from QED, isospin breaking and quark-line
disconnected e↵ects that were not included in the simu-
lations, but will be in future simulations. The remaining
systematic errors add up to only 1%. A detailed analysis
of these systematic errors allows us to map out a strat-
egy for reducing lattice QCD errors well below 1% using
computing resources that are substantial but currently
available.

II. LATTICE QCD CALCULATION

Almost all of the hadronic vacuum polarization contri-
bution (HVP) comes from connected diagrams with the
structure shown in Figure 1: the photon creates a quark
and antiquark which propagate, while interacting with
each other, and eventually annihilate back into a pho-
ton. Here we analyze the case where the photon creates
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HVP from LQCD: introduction
Consider in Euclidean spacetime (Blum ’02)

⇧µ⌫(Q) =

=

=

Z
d

4
x e

iQ·x hJµ(x)J⌫(0)i
⇣

QµQ⌫ � �µ⌫Q
2
⌘
⇧(Q2)

w/ Jµ = 2
3 ū�µu � 1

3 d̄�µd � 1
3 s̄�µs + 2

3 c̄�µc + · · ·

Then (Lautrup et al ’69, Blum ’02)

a
LO-HVP
` =

✓
↵

⇡

◆2 Z 1

0

dQ
2

m2
`

w(Q2/m
2
`)⇧̂(Q

2)

w/ ⇧̂(Q2) ⌘
h
⇧(Q2) � ⇧(0)

i
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pheno.

(HVP from Jegerlehner, “alphaQEDc17” (2017))

Laurent Lellouch KEK, 12-14 February 2018

F. Jegerlehner, “alphaQEDc17”

f
Q
2

m
µ2

⎛ ⎝⎜
⎞ ⎠⎟

Π
Q
2

(
)−

Π
0 (
)

⎡ ⎣
⎤ ⎦⋅
10

10

Q2 ! mµ
2 4

B. E. Lautrup et al., 1972

aµ
HVP = 4α em

2 dt  f! t( )
0

∞

∫  V t( )
Time-Momentum Representation

D. Bernecker and H. B. Meyer, 2011

FV & : A. discrete momenta 
( ); B.  in FV 

contaminates  for  w/ 
very large FV effects; C. 

a ≠ 0
Qmin = 2π/T > mμ/2 Πμν(0) ≠ 0

Π(Q2) ∼ Πμν(Q)/Q2 Q2 → 0
Π(0) ∼ ln(a)

aHVP,LO
μ

aHVP,LO
μ



Time-Momentum Representation

A. El-Khadra Tau 2021, 27 Sep - 01 Oct  2021

light-quark connected contribution: 
 ~90% of total 

s,c,b-quark contributions  
 ~8%, 2%, 0.05% of total 

disconnected contribution:  
  ~2% of total 

Isospinbreaking (QED + mu ≠ md ) corrections:  
 ~1% of total

aHVP,LO
μ (ud)

aHVP,LO
μ (s, c, b)

aHVP,LO
μ,disc

δaHVP,LO
μ
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Introduction

Isospin Breaking Corrections

I lattice calculations usually done in the isospin symmetric limit

I two sources of isospin breaking e�ects

I di�erent masses for up- and down quark (of O((md ≠ mu)/�QCD))

I Quarks have electrical charge (of O(–))

I lattice calculation aiming at 1% precision requires to include isospin breaking

I separation of strong IB and QED e�ects requires renormalization scheme

I definition of “physical point” in a “QCD only world” also scheme dependent

I IB contribution included in final lattice result from the WP [arXiv:2006.04822]
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Target: ~ 0.2% total error
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aHVP,LO
μ = aHVP,LO

μ (ud) + aHVP,LO
μ (s) + aHVP,LO

μ (c) + aHVP,LO
μ,disc + δaHVP,LO
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Introduction

Isospin Breaking Corrections

I lattice calculations usually done in the isospin symmetric limit

I two sources of isospin breaking e�ects

I di�erent masses for up- and down quark (of O((md ≠ mu)/�QCD))

I Quarks have electrical charge (of O(–))

I lattice calculation aiming at 1% precision requires to include isospin breaking

I separation of strong IB and QED e�ects requires renormalization scheme

I definition of “physical point” in a “QCD only world” also scheme dependent

I IB contribution included in final lattice result from the WP [arXiv:2006.04822]
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aHVP,LO
μ = aHVP,LO

μ (ud) + aHVP,LO
μ (s) + aHVP,LO

μ (c) + aHVP,LO
μ,disc + δaHVP,LO

μ

L 

a 

x Lattice HVP: Introduction

No reliance on exp. data, except for hadronic quantities 
used to calibrate the simulation ( )Mπ, MK, Mnucl, …
Can perform an explicit quark flavor separation of aHVP,LO

μ

A. El-Khadra Tau 2021, 27 Sep - 01 Oct  2021

light-quark connected contribution: 
 ~90% of total 

s,c,b-quark contributions  
 ~8%, 2%, 0.05% of total 

disconnected contribution:  
  ~2% of total 

Isospinbreaking (QED + mu ≠ md ) corrections:  
 ~1% of total

aHVP,LO
μ (ud)

aHVP,LO
μ (s, c, b)

aHVP,LO
μ,disc

δaHVP,LO
μ
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Isospin Breaking Corrections

I lattice calculations usually done in the isospin symmetric limit

I two sources of isospin breaking e�ects

I di�erent masses for up- and down quark (of O((md ≠ mu)/�QCD))

I Quarks have electrical charge (of O(–))

I lattice calculation aiming at 1% precision requires to include isospin breaking

I separation of strong IB and QED e�ects requires renormalization scheme

I definition of “physical point” in a “QCD only world” also scheme dependent

I IB contribution included in final lattice result from the WP [arXiv:2006.04822]
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with

⇧0 = ⇧ (0) = �
1
2
G2 , ⇧n =

(�1)n+1

(2n + 2)!
G2n+2 . (3.20)

A Padé approximation to ⇧ (and ⇧̂ ) can be constructed from the lowest few time moments of the correlator [358,366].
The time moments extend to infinitely large x0; however, the lattices are of finite extent, so one usually models the

long-time behavior of the current correlator C(x0) to extend the moment integral (or sum) to infinity. The same issue
also arises in the related time-momentum method (see Section 3.1.4), where it is discussed in more detail. For the time
moments, this issue clearly becomes more important for higher moments. The achievable precision was discussed in
Refs. [358,363], for example.

Time moments can also be used as input to a collection of approximants put forward in Refs. [367,368]. These arise
from the use of Mellin–Barnes techniques and, in the cases analyzed in Ref. [367], are shown to converge to the full
result very rapidly with the number of moments used. They have the advantage, over Padé approximants, of allowing for
a systematic matching to perturbation theory at short distance, though this advantage is of more formal than practical
relevance, given the very small size of perturbative contributions to aHVP, LOµ (see Section 3.1.2).

The Taylor coefficients themselves are also useful as intermediate quantities enabling detailed comparisons between
independent lattice calculations. In particular, the ⇧n for different n have different sensitivities to the short- and long-
distance systematic effects in lattice calculations (see Section 3.3). Finally, since the Taylor coefficients can also be
evaluated using the data-driven methods discussed in Section 2, they can be used to provide valuable tests of the lattice
methods.

3.1.4. Coordinate-space representation
An alternative way to write the subtracted VP in terms of the current correlator is given by [348]

⇧̂ (Q 2) = 4⇡2
Z

1

0
dx0 C(x0)


x20 �

4
Q 2 sin2

✓
Qx0
2

◆�
. (3.21)

Inserting this formulation of ⇧̂ (Q 2) into Eq. (3.4) for aHVP, LOµ , one finds that

aHVP, LOµ =

⇣ ↵

⇡

⌘2
Z

1

0
dx0 C(x0)ef (x0) , (3.22)

where the kernel function

ef (x0) = 8⇡2
Z

1

0

d!
!

f (!2)
h
!2x20 � 4 sin2

⇣!x0
2

⌘i
(3.23)

can be written explicitly in terms of a modified Bessel function of the second kind and Meijer’s G function [369] as

ef (x0) =
2⇡2

m2
µ


�2 + 8�E +

4
t̂2

+ t̂2 �
8
t̂
K1(2t̂) + 8 log t̂ + G2,1

1,3

✓ 3
2

0, 1, 1
2

���� t̂
2
◆�

, (3.24)

where t̂ = mµx0; numerically convenient series expansions foref are given in Appendix B of Ref. [369]. Alternatively,ef (x0)
is evaluated numerically (e.g., as in Ref. [10]).

While the main difficulty in the determination of aHVP, LOµ via ⇧̂ (Q 2) lies in getting an accurate estimate of ⇧ (Q 2) in
the low-Q 2 region, the main difficulty in determining aHVP, LOµ via Eq. (3.22) lies in controlling the large-x0 behavior of the
integrand. The main issues are the exponential growth of the relative statistical error of C(x0) at large time separations,
the presence of finite-volume (and potentially finite-temperature) effects in this regime, and the need to extend the x0
integration beyond the region where lattice data are available.

To address the latter issue, it becomes necessary to split the integration range at some point xcut0 , where for x0  xcut0
the correlator C(x0) is estimated by a local interpolation of the lattice data (with cubic splines working well in practice),
while for x0 > xcut0 a suitable extension derived from the lattice data supplemented with additional information is used
instead.

The value chosen for xcut0 impacts the overall error on aHVP, LOµ in two ways: if xcut0 is chosen too large, the statistical
accuracy deteriorates quickly due to the rapidly decaying signal-to-noise (StN24) ratio of the correlator data; if xcut0 is
chosen smaller, the systematic error due to the model dependence of the extension of the correlator grows. In practice, at
least for pion masses above the physical one, the effect is found to be negligible for the strange and charm-quark [358,375]
contributions as long as xcut0 � 1.2 fm, whereas for the light-quark contribution [12,376,377] a window can be found within
which the value of aHVP, LOµ is not significantly impacted by the precise choice of xcut0 at least for pion masses larger than
200MeV.

24 StN problems in lattice QCD have been studied since the pioneering works of Parisi [370] and Lepage [371] and arise when there are states
contributing to a variance correlation function with less than twice the energy of the ground state of the correlation function. A possible solution
to this problem can be found in the framework of multi-level Monte Carlo integration techniques for fermionic systems [372–374].
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3. Lattice QCD calculations of HVP

T. Blum, M. Bruno, M. Cè, C.T.H. Davies, M. Della Morte, A.X. El-Khadra, D. Giusti, Steven Gottlieb, V. Gülpers, G. Herdoíza,
T. Izubuchi, C. Lehner, L. Lellouch, M.K. Marinkovi¢, A.S. Meyer, K. Miura, A. Portelli, S. Simula, R. Van de Water, G. von
Hippel, H. Wittig

3.1. Introduction

In this section we review the status of lattice QCD calculations of the HVP contribution to the muon’s anomalous
magnetic moment. Our discussion is organized as follows: Section 3.1 provides a general introduction followed by
Section 3.2, which details the strategies employed in the various calculations. In Section 3.3 we compare recent lattice
results and in Section 3.4 we discuss connections of HVP calculations with the MUonE experiment, with ⌧ decays, and
with the running of the electroweak coupling constants ↵ and sin2 ✓W. Finally, in Section 3.5 we conclude with a summary
of the current status and prospects for the future.

Within this subsection, we first discuss some of the basic ideas and formulae in Section 3.1.1. Then in Section 3.1.2,
we discuss the calculation of HVP as a function of momentum, its integration over momenta, and which techniques for
calculating VP are most useful in different momentum ranges. In Section 3.1.3, we discuss the time moments method,
which is followed by a discussion of the coordinate space representation in Section 3.1.4. Finally, in Section 3.1.6, we
provide a brief discussion of some of the issues common to all the methods.

3.1.1. Hadronic vacuum polarization
Any lattice approach aiming to determine the leading hadronic contribution to the anomalous magnetic moment of

the muon starts from the correlator of the electromagnetic current

C (Nf )
µ⌫ (x) =

D
j(Nf )
µ (x)j(Nf )

⌫ (0)
E

, (3.1)

where j(Nf )
µ (x) =

PNf
f=1 Qf  ̄f (x)�µ f (x), the index f labeling quark flavors, and Qf being the corresponding electric charge

in units of the electron charge. Traditionally, one performs a Fourier transform and introduces the VP tensor,

⇧
(Nf )
µ⌫ (Q ) =

Z
d4x eiQ ·x C (Nf )

µ⌫ (x) . (3.2)

In the continuum and in infinite volume, Euclidean invariance and current conservation allow one to rewrite the tensor
as

⇧
(Nf )
µ⌫ (Q ) = (�µ⌫Q 2

� QµQ⌫)⇧ (Nf )(Q 2) . (3.3)

In finite volume and at finite lattice spacing, the tensor decomposition of HVP is more complicated, because SO(4) sym-
metry is explicitly broken to the finite hypercubic group through space–time discretization and boundary conditions [348,
349]. The relation above is, however, recovered in the continuum and infinite-volume limits.

In order to obtain the leading hadronic contribution to the anomalous magnetic moment of the muon (aHVP, LOµ ), one
performs an integration over Q 2. Specifically, (and suppressing the index Nf )

aHVP, LOµ =

⇣ ↵
⇡

⌘2
Z

1

0
dQ 2 f (Q 2)⇧̂ (Q 2) , (3.4)

where ⇧̂ (Q 2) ⌘ 4⇡2
⇥
⇧ (0) �⇧ (Q 2)

⇤
and

f (Q 2) =
m2

µQ 2Z3(1 � Q 2Z)
1 + m2

µQ 2Z2 , Z = �

Q 2 �

q
Q 4 + 4m2

µQ 2

2m2
µQ 2 , (3.5)

as derived in Refs. [350–353] for spacelike momenta.
We see that in going from Eq. (3.1) to Eq. (3.4) one needs to perform a Fourier transform (which implies a volume

integral in coordinate space) and a weighted integral over momenta, with a weight function (or kernel) f (Q 2). One has
the flexibility of performing these operations in different orders, which produces the different approaches described
in the following. While the final quantity is always aHVP, LOµ , intermediate expressions (e.g., concerning kernels) differ
substantially and in practical implementations each approach has its own virtues and drawbacks.

3.1.2. Calculating and integrating ⇧ (Q 2) to obtain aHVP, LOµ

Let us first consider the case where the VP tensor, ⇧µ⌫(Q ), has been computed for a number of lattice momenta,
perhaps including the use of twisted boundary conditions [354,355] in order to obtain a finer momentum resolution. What
is usually computed is the zero-mode-subtracted VP tensor (obtained by replacing eiQ ·x with eiQ ·x � 1 in Eq. (3.2)), as
proposed in Ref. [348]. This reduces contamination from finite-volume effects [349,356], and also removes contact terms,
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The interval 0–Q 2
low in Eq. (3.8) is obviously the most important one and obtaining a reliable description of ⇧̂ (Q 2)

in this region is therefore crucial. The authors of Refs. [363,364] start from the observation that ⇧̂ (Q 2) is related to a
Stieltjes function, whose mathematical properties are well studied [365], in particular concerning the convergence of
representations via Padé approximants. They proposed, in fact, to use Padé functions of the form

⇧[N,M](Q 2) = ⇧ (0) +

PN
i=1 ai Q

2i

1 +
PM

i=1 bi Q 2i
, (3.11)

to model the VP in the low-Q 2 regime. Mathematical theorems guarantee that asymptotically in M and N one obtains a
model-independent description of the data and the convergence of the Padé sequence provides rigorous lower and upper
bounds to the exact function ⇧̂ (Q 2) of the form

⇧[N�1,N](Q 2)  ⇧[N,N+1](Q 2)  ⇧̂ (Q 2)  ⇧[N,N](Q 2)  ⇧[N�1,N�1](Q 2) . (3.12)

However, in practical applications M and N are chosen to be equal to 2 or 3 at most. Another approach put forward in
Ref. [363] relies on a conformal change of variables in order to improve the radius of convergence of a simple Taylor
expansion. In detail, the proposal consists of adopting the following fit model

⇧N (Q 2) = ⇧ (0) +

NX

i=1

piwi , w =
1 �

p
1 + z

1 +
p
1 + z

, z = Q 2/4M2
⇡ . (3.13)

In both cases (Padé functions or conformal polynomials) the stability of the fits can be improved by supplementing them
with estimates of the derivatives of ⇧ (Q 2) at zero momentum either through numerical differentiation or from the time
moments, as we discuss in the following subsection.

Finally, we note that the hybrid method can naturally be adapted to include information on ⇧̂ (Q 2) from experimental
data at low Q 2. Indeed, the proposed MUonE experiment [291] aims to provide a measurement of the VP function at
spacelike Q 2 in exactly the low-Q 2 region that is problematic for lattice calculations. Here the split into three Q 2 regions
as in Eqs. (3.7)–(3.10) is an integral part of the MUonE experiment’s strategy, see Section 3.4.1 for more details.

3.1.3. Time moments
The method of time moments was introduced in Ref. [358] as a way to calculate the VP for small Q 2. Starting from

Eq. (3.3), we can look at the VP tensor with two identical spatial indices with Q having only a time-component, i.e.,
Qµ = (!, 0, 0, 0). Again dropping the superscript (Nf ), we have

⇧kk(Q ) = Q 2⇧ (Q 2) = !2⇧ (!2) . (3.14)

Using Eq. (3.2), we can reexpress the right-hand side (RHS) in terms of the Fourier transform of the vector-current
correlator:

!2⇧ (!2) =

Z
d4x eiQ ·xCkk(x) . (3.15)

Recognizing that we can pick any spatial index k, we can increase statistics by averaging over all three spatial directions.
Further, since Q · x = !x0, we can define

C(x0) = �
1
3

3X

k=1

Z
d3x Ckk(x) , (3.16)

and write the RHS of Eq. (3.15) as

�

Z
dx0 ei!x0C(x0) . (3.17)

At this point, we may either consider the coefficients resulting from an expansion of the exponential in a power series
or successively differentiate the RHS with respect to ! to Taylor expand around ! = 0. In either case, the integrals with
odd powers of x0 vanish because C(x0) is an even function. The time moments are given by

G2n ⌘

Z
1

�1

dx0 x2n0 C(x0) = (�1)n+1 @2n

@!2n

�
!2⇧ (!2)

�
!=0 . (3.18)

Reverting to Q 2 rather than ! as the kinematic variable, we may write a power series for ⇧ (Q 2),

⇧ (Q 2) = ⇧0 +

1X

n=1

⇧nQ 2n , (3.19)

54

3

 0
 100
 200
 300
 400
 500

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

× 
10

-1
0

t / fm

R-ratio
Light+Strange (64I)

FIG. 4. Comparison of wtC(t) obtained using R-ratio data
[1] and lattice data on our 64I ensemble.

lation presented here, we only include diagram M. For
the meson masses this corresponds to neglecting the sea
quark mass correction, which we have previously [17] de-
termined to be an O(2%) and O(14%) e↵ect for the pi-
ons and kaons, respectively. This estimate is based on
the analytic fits of (H7) and (H9) of Ref. [17] with ratios
C

m⇡, K

2 /C
m⇡, K

1 given in Tab. XVII of the same reference.
For the hadronic vacuum polarization the contribution of
diagram R is negligible since �mup ⇡ ��mdown and di-
agram O is SU(3) and 1/Nc suppressed. We therefore
assign a corresponding 10% uncertainty to the SIB cor-
rection.

We also compute the O(↵) correction to the vector
current renormalization factor ZV used in C(0) [17, 18]
and find a small correction of approximately 0.05% for
the light quarks.

We perform the calculation of C(0) on the 48I and 64I
ensembles described in Ref. [17] for the up, down, and
strange quark-connected contributions. For the charm
contribution we also perform a global fit using additional
ensembles described in Ref. [22]. The quark-disconnected
contribution as well as QED and SIB corrections are com-
puted only on ensemble 48I.

For the noisy light quark connected contribution, we
employ a multi-step approximation scheme with low-
mode averaging [23] over the entire volume and two levels
of approximations in a truncated deflated solver (AMA)
[24–27] of randomly positioned point sources. The low-
mode space is generated using a new Lanczos method
working on multiple grids [28]. Our improved statisti-
cal estimator for the quark disconnected diagrams is de-
scribed in Ref. [29] and our strategy for the strange quark
is published in Ref. [30]. For diagram F, we re-use point-
source propagators generated in Ref. [31].

The correlator C(t) is related to the R-ratio data
[11] by C(t) = 1

12⇡2

R1
0 d(

p
s)R(s)se�

p
st with R(s) =

3s
4⇡↵2�(s, e+e� ! had). In Fig. 4 we compare a lattice
and R-ratio evaluation of wtC(t) and note that the R-
ratio data is most precise at very short and long dis-
tances, while the lattice data is most precise at interme-
diate distances. We are therefore led to also investigate
a position-space “window method” [11, 32] and write

aµ = aSDµ + aWµ + aLDµ (6)

with aSDµ =
P

t C(t)wt[1 � ⇥(t, t0,�)], aWµ =P
t C(t)wt[⇥(t, t0,�) � ⇥(t, t1,�)], and aLDµ =P
t C(t)wt⇥(t, t1,�), where each contribution is

accessible from both lattice and R-ratio data. We define
⇥(t, t0,�) = [1 + tanh [(t� t0)/�]] /2 which we find to
be helpful to control the e↵ect of discretization errors
by the smearing parameter �. We then take aSDµ and
aLDµ from the R-ratio data and aWµ from the lattice.
In this work we use � = 0.15 fm, which we find to
provide a su�ciently sharp transition without increasing
discretization errors noticeably. This method takes the
most precise regions of both datasets and therefore may
be a promising alternative to the proposal of Ref. [33].

ANALYSIS AND RESULTS

In Tab. I we show our results for the individual as well
as summed contributions to aµ for the window method
as well as a pure lattice determination. We quote sta-
tistical uncertainties for the lattice data (S) and the R-
ratio data (RST) separately. For the quark-connected
up, down, and strange contributions, the computation is
performed on two ensembles with inverse lattice spacing
a�1 = 1.730(4) GeV (48I) as well as a�1 = 2.359(7) GeV
(64I) and a continuum limit is taken. The discretization
error (C) is estimated by taking the maximum of the
squared measured O(a2) correction as well as a simple
(a⇤)4 estimate, where we take ⇤ = 400 MeV. We find
the results on the 48I ensemble to di↵er only a few per-
cent from the continuum limit. This holds for the full
lattice contribution as well as the window contributions
considered in this work. For the quark-connected charm
contribution additional ensembles described in Ref. [22]
are used and the maximum of the above and a (amc)4

estimate is taken as discretization error. The remain-
ing contributions are small and only computed on the
48I ensemble for which we take (a⇤)2 as estimate of dis-
cretization errors.

For the up and down quark-connected and discon-
nected contributions, we correct finite-volume e↵ects to
leading order in finite-volume position-space chiral per-
turbation theory [34]. Note that in our previous pub-
lication of the quark-disconnected contribution [29], we
added this finite-volume correction as an uncertainty but
did not shift the central value. We take the largest ratio
of p6 to p4 corrections of Tab. 1 of Ref. [35] as systematic
error estimate of neglected finite-volume errors (V). For
the SIB correction we also include the sizeable di↵erence
of the corresponding finite and infinite-volume chiral per-
turbation theory calculation as finite-volume uncertainty.
For the QED correction, we repeat the computation us-
ing an infinite-volume photon (QED1 [36]) and include
the di↵erence to the QEDL result as a finite-volume er-
ror. Further details of the QED1 procedure are provided
as supplementary material.

RBC/UKQCD 2018

Jegerlehner 2018

statistical error mainly from tail dominated by two pion states

stat. noise, FVEsdiscr. effects

Challenges:
sub-percent stat. precision
exp. growing StN ratio in  as  V(t) t → ∞

correct for FVEs, control discr. effects 
(scale setting and continuum extrap.)

quark-disconn. diagrams
control stat. & stochastic noise

isospin-breaking: mu ≠ md, αem ≠ 0

A. El-Khadra Tau 2021, 27 Sep - 01 Oct  2021

light-quark connected contribution: 
 ~90% of total 

s,c,b-quark contributions  
 ~8%, 2%, 0.05% of total 

disconnected contribution:  
  ~2% of total 

Isospinbreaking (QED + mu ≠ md ) corrections:  
 ~1% of total

aHVP,LO
μ (ud)

aHVP,LO
μ (s, c, b)

aHVP,LO
μ,disc

δaHVP,LO
μ
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Introduction

Isospin Breaking Corrections

I lattice calculations usually done in the isospin symmetric limit

I two sources of isospin breaking e�ects

I di�erent masses for up- and down quark (of O((md ≠ mu)/�QCD))

I Quarks have electrical charge (of O(–))

I lattice calculation aiming at 1% precision requires to include isospin breaking

I separation of strong IB and QED e�ects requires renormalization scheme

I definition of “physical point” in a “QCD only world” also scheme dependent

I IB contribution included in final lattice result from the WP [arXiv:2006.04822]
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Target: ~ 0.2% total error
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aHVP,LO
μ = aHVP,LO

μ (ud) + aHVP,LO
μ (s) + aHVP,LO

μ (c) + aHVP,LO
μ,disc + δaHVP,LO

μ

L 

a 

x Lattice HVP: Introduction

A. El-Khadra Tau 2021, 27 Sep - 01 Oct  2021

light-quark connected contribution: 
 ~90% of total 

s,c,b-quark contributions  
 ~8%, 2%, 0.05% of total 

disconnected contribution:  
  ~2% of total 

Isospinbreaking (QED + mu ≠ md ) corrections:  
 ~1% of total
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Introduction

Isospin Breaking Corrections

I lattice calculations usually done in the isospin symmetric limit

I two sources of isospin breaking e�ects

I di�erent masses for up- and down quark (of O((md ≠ mu)/�QCD))

I Quarks have electrical charge (of O(–))

I lattice calculation aiming at 1% precision requires to include isospin breaking

I separation of strong IB and QED e�ects requires renormalization scheme

I definition of “physical point” in a “QCD only world” also scheme dependent

I IB contribution included in final lattice result from the WP [arXiv:2006.04822]
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aHVP,LO
μ = aHVP,LO

μ (ud) + aHVP,LO
μ (s) + aHVP,LO

μ (c) + aHVP,LO
μ,disc + δaHVP,LO

μ

L 

a 

x Lattice HVP: Introduction

A. El-Khadra Tau 2021, 27 Sep - 01 Oct  2021

light-quark connected contribution: 
 ~90% of total 

s,c,b-quark contributions  
 ~8%, 2%, 0.05% of total 

disconnected contribution:  
  ~2% of total 

Isospinbreaking (QED + mu ≠ md ) corrections:  
 ~1% of total

aHVP,LO
μ (ud)

aHVP,LO
μ (s, c, b)

aHVP,LO
μ,disc

δaHVP,LO
μ
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I di�erent masses for up- and down quark (of O((md ≠ mu)/�QCD))

I Quarks have electrical charge (of O(–))

I lattice calculation aiming at 1% precision requires to include isospin breaking

I separation of strong IB and QED e�ects requires renormalization scheme

I definition of “physical point” in a “QCD only world” also scheme dependent

I IB contribution included in final lattice result from the WP [arXiv:2006.04822]
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Introduction

Isospin Breaking Corrections

I lattice calculations usually done in the isospin symmetric limit

I two sources of isospin breaking e�ects

I di�erent masses for up- and down quark (of O((md ≠ mu)/�QCD))

I Quarks have electrical charge (of O(–))

I lattice calculation aiming at 1% precision requires to include isospin breaking

I separation of strong IB and QED e�ects requires renormalization scheme

I definition of “physical point” in a “QCD only world” also scheme dependent

I IB contribution included in final lattice result from the WP [arXiv:2006.04822]
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Target: ~ 0.2% total error
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aHVP,LO
μ = aHVP,LO

μ (ud) + aHVP,LO
μ (s) + aHVP,LO

μ (c) + aHVP,LO
μ,disc + δaHVP,LO

μ

L 

a 

x Lattice HVP: Introduction

light-quark connected
s,c-quark connected

disconnected

IB ( )mu ≠ md + QED

aHVP,LO
μ (ud) ∼ 90 % of total

aHVP,LO
μ (s, c) ∼ 8 % , 2 % of total

aHVP,LO
μ,disc ∼ 2 % of total

δaHVP,LO
μ ∼ 1 % of total



Windows “on the g-2 mystery”

t0 = 0.4 fm t1 = 1.0 fm

Δ = 0.15 fm

aHVP,LO
μ = aSD

μ + aW
μ + aLD

μ

aSD
μ ( f; t0, Δ) ≡ 4α2

em ∫
∞

0
dt f̃(t)Vf(t)[1 − Θ (t, t0, Δ)]

aLD
μ ( f; t1, Δ) ≡ 4α2

em ∫
∞

0
dt f̃(t)Vf(t) Θ (t, t1, Δ)

aW
μ ( f; t0, t1, Δ) ≡ 4α2

em ∫
∞

0
dt f̃(t)Vf(t)[Θ (t, t0, Δ) − Θ (t, t1, Δ)]

Θ (t, t′ , Δ) =
1

1 + e−2(t−t′ )/Δ

Windows in Euclidean time

170 180 190 200 210
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a
µ

W (ud, conn, iso) * 1010

LM 20

BMW 20

Mainz/CLS 20 (prelim.)

FHM 20 (prelim., stat only)

Aubin et al. 19 - finest as

RBC/UKQCD 18

ETMC 20 (prelim.)

R-ratio & lattice

Mainz/CLS 20 f
!
-resc. (prelim.)

Aubin et al. 19

t0,t1,!( ) = 0.4,1.0,0.15( )  fm

Compiled by D. Giusti

Windows defined in Euclidean time

↪→ t0 = 0.4 fm, t1 = 1.0 fm, ∆ = 0.15 fm

Less clear separation in
√

s

↪→ long tail of window part

Windows for connected ud only or for the full

thing?
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M. Hoferichter (Institute for Theoretical Physics) Comparison with e+e− data November 20, 2020 3

Restrict integration over Euclidean time to sub-intervals
reduce/enhance sensitivity to systematic effects

Intermediate window

Reduced FVEs

Much better StN ratio

“Standard” choice:

Precision test of different lattice calculations

Commensurate uncertainties compared to 
dispersive evaluations

RBC/UKQCD 2018

14



Comparison with R-ratio

15

V(t) =
1

12π2 ∫
∞

Mπ0

d( s) R(s) s e− st R(s) =
3s

4πα2
em

σ(s, e+e− → hadrons)

aHVP,LO
μ,win = 4α2

em ∫
∞

Mπ0

d( s)R(s)
1

12π2
s∫

∞

0
dt f̃(t) Θwin(t) e− st

Insert  into the expression for TMRV(t)

Hartmut	Wittig

Window	observables:	Comparison	with	 -ra$oR

16

Star$ng	point: [RBC/UKQCD	2018]
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G(t) =
1

12⇡2

Z 1

m2
⇡0

d(
p

s) R(s) s e�
p

st
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ahvp, ID
µ =

✓↵
⇡

◆2 Z 1

m2
⇡0

d(
p

s) R(s) W ID(
p

s; t0, t1)
<latexit sha1_base64="Umpnryxit1JLcK38Sna4+F/KP+E="></latexit>

W ID(
p

s; t0, t1) =
1

12⇡2 s
Z 1

0
dt K̃(t) W ID(t; t0, t1) e

p
st

Insert	 	into	expression	for	$me-momentum	representa$on:G(t)

Intermediate	window	from	 -ra$o	following	
procedure	for	WP	es$mate:

R
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ahvp, ID
µ ⌘ awin

µ = (229.4 ± 1.4) · 10�10
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Figure 1: Short-distance, intermediate, and long-distance weight functions in Euclidean time (left), and their correspondence in center-of-mass energy (right).

aHVP
SD aHVP

int aHVP
LD aHVP

total

All channels
68.4(5) 229.4(1.4) 395.1(2.4) 693.0(3.9)
[9.9%] [33.1%] [57.0%] [100%]

2⇡ below 1.0 GeV
13.7(1) 138.3(1.2) 342.3(2.3) 494.3(3.6)
[2.8%] [28.0%] [69.2%] [100%]

3⇡ below 1.8 GeV
2.5(1) 18.5(4) 25.3(6) 46.4(1.0)
[5.5%] [39.9%] [54.6%] [100%]

[1] – – – 693.1(4.0)
[24] – 231.9(1.5) – 715.4(18.7)
[36] – 236.7(1.4) – 707.5(5.5)

Table 1: Window quantities for HVP, based on Refs. [7–9, 11], using the merg-
ing procedure from Ref. [1] and the window parameters (11) (for all channels,
2⇡ below 1.0 GeV, and 3⇡ below 1.8 GeV; in each case indicating the decompo-
sition of the total in %). Previous results from lattice QCD and phenomenology
are shown for comparison where available. All numbers in units of 10�10.

available.
In Sec. 2, we provide such comparison numbers for the stan-

dard windows from Ref. [24], with e+e� uncertainties treated
in the same spirit as in Ref. [1]. In Sec. 3, we then consider a
set of modified window quantities that should allow for a more
detailed analysis of the energy dependence. The correlations
among the di↵erent windows are also evaluated and included.
Finally, we discuss the challenges in constructing optimized
window observables to isolate the origin of potential conflicts
between e+e� data and lattice QCD.

2. Euclidean windows

The master formula for the HVP contribution in the data-
driven approach reads [98, 99]

aHVP
µ =

✓↵mµ
3⇡

◆2 Z 1

sthr

ds
K̂(s)

s2 Rhad(s) ,

Rhad(s) =
3s

4⇡↵2�(e+e� ! hadrons(+�)) , (6)

with kernel function

K̂(s) =
3s
m2
µ

"
x2

2
�
2 � x2� +

1 + x
1 � x

x2 log x

+

�
1 + x2�(1 + x)2

x2

✓
log(1 + x) � x +

x2

2

◆#
,

x =
1 � �µ(s)
1 + �µ(s)

, �µ(s) =

s

1 �
4m2
µ

s
. (7)

The integration threshold takes the value sthr = M2
⇡0 , since the

⇡0� channel is included, by convention, in the photon-inclusive
cross section. In lattice QCD, most collaborations employ the
time-momentum representation [100–102]

aHVP
µ =

✓↵
⇡

◆2 Z 1

0
dt K̃(t)G(t) , (8)

with another known kernel function K̃(t) and G(t) given by the
correlator of two electromagnetic currents jem

µ

G(t) = �a3

3

3X

k=1

X

x
Gkk(t, x) ,

Gµ⌫(x) = h0| jem
µ (x) jem

⌫ (0)|0i , (9)

with the lattice spacing taken to the limit a ! 0. Windows in
Euclidean time are defined by an additional weight function in
Eq. (8). The ones proposed in Ref. [24]

⇥SD(t) = 1 � ⇥(t, t0,�) ,
⇥win(t) = ⇥(t, t0,�) � ⇥(t, t1,�) ,
⇥LD(t) = ⇥(t, t1,�) ,

⇥(t, t0,�) =
1
2

✓
1 + tanh

t � t0

�

◆
, (10)

were designed to separate short-distance, intermediate, and
long-distance contributions, respectively, with parameters

t0 = 0.4 fm , t1 = 1.0 fm , � = 0.15 fm . (11)
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studies	of	energy	dependence	
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Figure 1: Short-distance, intermediate, and long-distance weight functions in Euclidean time (left), and their correspondence in center-of-mass energy (right).

aHVP
SD aHVP

int aHVP
LD aHVP

total

All channels
68.4(5) 229.4(1.4) 395.1(2.4) 693.0(3.9)
[9.9%] [33.1%] [57.0%] [100%]

2⇡ below 1.0 GeV
13.7(1) 138.3(1.2) 342.3(2.3) 494.3(3.6)
[2.8%] [28.0%] [69.2%] [100%]

3⇡ below 1.8 GeV
2.5(1) 18.5(4) 25.3(6) 46.4(1.0)
[5.5%] [39.9%] [54.6%] [100%]

White Paper [1] – – – 693.1(4.0)
RBC/UKQCD [24] – 231.9(1.5) – 715.4(18.7)
BMWc [36] – 236.7(1.4) – 707.5(5.5)
BMWc/KNT [7, 36] – 229.7(1.3) – –
Mainz/CLS [99] – 237.30(1.46) – –
ETMC [100] 69.33(29) 235.0(1.1) – –

Table 1: Window quantities for HVP, based on Refs. [7–9, 11], using the merg-
ing procedure from Ref. [1] and the window parameters (11) (for all channels,
2⇡ below 1.0 GeV, and 3⇡ below 1.8 GeV; in each case indicating the decom-
position of the total in %). Previous results from lattice QCD and phenomenol-
ogy are shown for comparison where available (the quoted phenomenologi-
cal evaluation of aHVP

int from Ref. [36] is based on Ref. [7]). We also include
Refs. [99, 100], which appeared after the initial submission of our paper. All
numbers in units of 10�10.

more immediate conclusions once new lattice results become
available.

In Sec. 2, we provide such comparison numbers for the stan-
dard windows from Ref. [24], with e+e� uncertainties treated
in the same spirit as in Ref. [1]. In Sec. 3, we then consider a
set of modified window quantities that should allow for a more
detailed analysis of the energy dependence. The correlations
among the di↵erent windows are also evaluated and included.
Finally, we discuss the challenges in constructing optimized
window observables to isolate the origin of potential conflicts
between e+e� data and lattice QCD.

2. Euclidean windows

The master formula for the HVP contribution in the data-
driven approach reads [101, 102]

aHVP
µ =

✓↵mµ
3⇡

◆2 Z 1

sthr

ds
K̂(s)

s2 Rhad(s) ,

Rhad(s) =
3s

4⇡↵2�(e+e� ! hadrons(+�)) , (6)

with kernel function

K̂(s) =
3s
m2
µ

"
x2

2
�
2 � x2� +

1 + x
1 � x

x2 log x

+

�
1 + x2�(1 + x)2

x2

✓
log(1 + x) � x +

x2

2

◆#
,

x =
1 � �µ(s)
1 + �µ(s)

, �µ(s) =

s

1 �
4m2
µ

s
. (7)

The integration threshold takes the value sthr = M2
⇡0 , since the

⇡0� channel is included, by convention, in the photon-inclusive
cross section (in the same way, final-state radiation is included,
in particular in the 2⇡ and 3⇡ channels below). In lattice QCD,
most collaborations employ the time-momentum representa-
tion [98, 103, 104]

aHVP
µ =

✓↵
⇡

◆2 Z 1

0
dt K̃(t)G(t) , (8)

with another known kernel function K̃(t) and G(t) given by the
correlator of two electromagnetic currents jem

µ

G(t) = �a3

3

3X

k=1

X

x
Gkk(t, x) ,

Gµ⌫(x) = h0| jem
µ (x) jem

⌫ (0)|0i , (9)

with the lattice spacing taken to the limit a ! 0. Windows in
Euclidean time are defined by an additional weight function in

2

Colangelo et al. 2022



BMW-DMZ ’24 calculation 

Uncertainty reduction

(a)
Statistical

(b)
Finite
L & T

(c)
Continuum

limit

(d)
Physical

point

(e)
Isospin

breaking

0
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10

E
rr

or
⇥

10
10

1.05%

0.32%
0.26%

1.89%

0.35%

0.13%

1.12% 0.57%

0.27%
0.77%

0.22%
0.15%

0.71%

0.19% 0.19%

) uncertainty reduced by:
2017 ! 2020: ÷3.4 or 19. ! 5.5
2020 ! 2024: ÷1.7 or 5.5 ! 3.3
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2 Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52428 Jülich, Germany
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Over 30,000 gauge configurations, 10’s of millions of measurements 

New lattice spacing  fm (same cost as all of BMWc ’20) a = 0.048 divides  effects by 2a2



Strategy for improvement

New simulations on finer (“Monster”) lattice spacing:
1283 ⇥ 192 w/ a = 0.048 fm

Completely revamped analysis vs BMW ’20

Break up analysis into optimized set of windows: 0�0.4,
0.4�0.6, 0.6�1.2, 1.2�2.8 fm

Combined fit to aLO-HVP
µ,win,04-06, aLO-HVP

µ,win,06-12, aLO-HVP
µ,win,12-28

Continuum extrapolate I = 0 instead of disconnected

! reduces statistical uncertainty
! reduces a ! 0 error

Data-driven evaluation of tail: aLO-HVP
µ,28-1 (proposed and

used w/ 1 fm ! 1 [RBC/UKQCD ’18])

! reduces FV effect 18.5(2.5) ! 9.3(9), i.e. cv ÷2 & err ÷3
! reduces LD noise
! reduces LD taste breaking and a ! 0 error

[0.,∞] fm

[0.,0.4] fm

[0.4,0.6] fm

[0.6,1.2] fm

[1.2,2.8] fm

[2.8,∞] fm

0 1 2 3 4 5

0

100

200

300

400

t [fm]

d
a
μ

d
t

[f
m

-
1
]

[plot made w/ KNT ’18 data set]

Fully blinded analysis:

Independent blinding by factor ±3% on
correlator for each window and
component, including data-driven tail
>
⇠ 2 independent analyses of all

blinded aLO-HVP
µ contributions (and of

other aspects)
Once agreement reached, partial
unblinding to allow sum of contributions
Full unblinding on July 12, 2024, w/
automatic script that made appropriate
changes in all figures and text
Paper submitted to arXiv on July 15,
2024

Laurent Lellouch g � 2 @ KEK, 7th TI workshop, September 11, 2024
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Strategy for improvement

New simulations on finer lattice spacing:

Completely revamped analysis vs BMWc ’20



July 12, 2024: unblinding
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July 12, 2024: unblinding
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Systematic error 0.60 0.29 %
Pseudoscalar fit range 0.01 < 0.01 %
Physical value of Mss 0.01 < 0.01 %
w0 scale setting 0.21 0.10 %
Lattice spacing cuts 0.14 0.07 %
Order of fit polynomials 0.20 0.10 %
Continuum parameter (�KS or a2) 0.40 0.20 %
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Other windows and comparison
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Figure 3: Exploratory data-driven results for the lqc components of the RBC/UKQCD
windows employing CMD-3 2fi data [32] in the energy region covered by the CMD-3
experiment and KNT19 data [13] elsewhere (light blue) in comparison with data-
driven results obtained employing KNT19 data only (red), and isospin-symmetric
lattice-QCD determinations of the same quantities. Results from this work are labeled
“BBGKMP 24.” (Upper-left panel) Data-driven results for a

SD,lqc
µ compared with results

from Refs. [33,43,45–47,76]. (Upper-right panel) Data-driven results for a
int,lqc
µ compared

with results from Refs. [30,39–46]. (Bottom-left panel) Data-driven results for a
LD,lqc
µ

compared with the recent results of Refs. [49, 77]. (Bottom-right panel) Data-driven
a

HVP,lqc
µ compared with results from Refs. [30,39,41,49,51,78–81].

shift in the 2fi contribution produced by the CMD-3 data would, in fact, be su�cient to
eliminate the discrepancy between the experimental result for aµ and the White Paper
SM expectation obtained using the pre-CMD-3 dispersive HVP result. Unfortunately,
the disagreement between the e

+
e

≠ æ fi
+

fi
≠ cross sections obtained by CMD-3 and

Benton et al. 2024
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405 410 415 420 425

(ahvp
µ )LD, ud, conn

· 1010

RBC/UKQCD 24

Mainz/CLS 24

Figure 6. Overview of results for the light-connected contribution to (ahvp
µ )LD. Open symbols

denote the results in the BMW20 scheme whereas results that are shown by filled symbols have
been computed in the Mainz and RBC/UKQCD worlds, respectively.

fermions [36, 37, 92] are systematically larger than those obtained with staggered quarks,
including the result in [14] for w0 that defines the BMW20 scheme. At present, this makes
it difficult to quantitatively address the question of the hadronic scheme dependence in the
physical values of t0 and w0. However, the dependence of (ahvp

µ )LD on the hadronic scheme
could be relevant due to its high precision, its enhanced sensitivity to the scale setting and
relatively large contributions from isospin-breaking corrections. The size of the latter is
not yet precisely known, and care is needed when combining results from different isoQCD
schemes.

In figure 6 we compare our results for (a3,3
µ )LD in our preferred scheme eq. (3.2) and in

the BMW20 scheme eq. (A.7) with the recent determination by RBC/UKQCD [88] in their
RBC/UKQCD18 scheme and in the BMW20 scheme [14]. We find excellent agreement
between the two calculation when the same scheme is employed.2 This is a reassuring
indication of universality between two different lattice actions in the pure long-distance
regime of a

hvp
µ and strengthens our confidence in the reliability of lattice QCD results for this

quantity. However, the results differ noticeably when a different scheme is employed. While
this is not unexpected in isospin-symmetric QCD, it is clear that any scheme dependence
would have to be compensated upon properly including isospin-breaking effects.

We stress that we observe sizeable higher-order cutoff effect when w0 is used to set
the scale, leading to larger overall uncertainties in the continuum limit. This is why we
have chosen f⇡ and fK in 2 + 1-flavour QCD as scale-setting quantities, as outlined in
appendix A. By contrast, the BMW20 scheme is based on the ⌦-baryon mass computed in
2 + 1 + 1-flavour QCD+QED, which is used to determine the value of w0 at the physical
point. When the latter is used as input in our calculation in order to connect to the BMW20
scheme, we observe a shift in the central value of our result. We cannot presently resolve
whether this shift is entirely explained by the different choice of scale.

2In this comparison, the contribution of the scale uncertainty to the error is not included.

– 23 –

Mainz ’24



Tail contributionOf window and tail
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Tail aLO-HVP
µ,28-1 contributes <

⇠ 5% to final result for
aµ

Tail dominated by cross section below ⇢ peak:
⇠ 75% for

p
s  0.63 GeV

Partial tail aLO-HVP
µ,28-35 for comparison with lattice

dominated by cross section below ⇢ peak:
⇠ 70% for

p
s  0.63 GeV

For small
p

s possible radiative-correction
issues are less pronounced [DHLMZ ’23]

Region well controlled by theory (�PT,
analyticity, unitarity, . . . ) and other experimental
constraints (e.g. hr2

⇡i)

[plots made w/ KNT ’18 data set]
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Cross section and the tailCross section and the tail

Tail aLO-HVP
µ,28-1 dominated cross section below ⇢ peak: ⇠ 75% for

p
s  0.63 GeV

All measurements agree to within 1.4� for
p

s <⇠ 0.55 GeV

) tensions that plague aLO-HVP
µ & aLO-HVP

µ,win not present here

Laurent Lellouch g � 2 @ KEK, 7th TI workshop, September 11, 2024
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Data-driven tail
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Data-driven partial-tail comparison with lattice
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All data-driven result agree very well

Weighted average taken w/ and w/out ⌧ :
�2/dof = 1.1 for both

Final number: average w/ ⌧ , PDG factor,
and systematic = full difference ⌧ /no-⌧
added linearly

aLO-HVP
µ,28-35 = 18.12(11)(5)[16]

Excellent agreement w/ lattice, but
uncertainty reduced by factor ⇠ 15

Laurent Lellouch g � 2 @ KEK, 7th TI workshop, September 11, 2024

Data-driven tail
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systematic = full difference ⌧ /no-⌧ added
linearly

aLO-HVP
µ,28-1 = 27.59(17)(9)[26]

Only <⇠ 5% of final result for aµ

Contributes ⇠ 65% to total squared
uncertainty improvement: 5.5 ! 3.3
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Summary of all contributions [BMW-DMZ ’24]

24

All contributions to aµ [BMW-DMZ ’24]

light and disconnected 00 � 28 618.6(1.9)(2.3)[3.0] this work
strange 00 � 28 53.19(13)(16)[21] this work
charm 00 � 28 14.64(24)(28)[37] this work
light qed �1.57(42)(35) BMW’20 Table 15 corrected
light sib 6.60(63)(53) BMW’20, Table 15
disconnected qed �0.58(14)(10) BMW’20, Table 15
disconnected sib �4.67(54)(69) BMW’20, Table 15
disconnected charm 0.0(1) BMW’20, Section 4 in Supp. Mat.
strange qed �0.0136(86)(76) BMW’20, Table 15
charm qed 0.0182(36) ETM’19
bottom 0.271(37) HPQCD’14
tail from data-driven 28 � 1 27.59(17)(9)[26] this work
total 714.1(2.2)(2.5)[3.3]

aLO-HVP
µ ⇥ 1010 = 714.1(2.2)(2.5)[3.3] [0.46%]

Laurent Lellouch g � 2 @ KEK, 7th TI workshop, September 11, 2024

light and disconnected 00 � 28 618.6(1.9)(2.3)[3.0] this work, Equation (34)
strange 00 � 28 53.19(13)(16)[21] this work, Equation (37)
charm 00 � 28 14.64(24)(28)[37] this work, Equation (40)
light qed �1.57(42)(35) [5], Table 15 corrected in Equation (45)
light sib 6.60(63)(53) [5], Table 15
disconnected qed �0.58(14)(10) [5], Table 15
disconnected sib �4.67(54)(69) [5], Table 15
disconnected charm 0.0(1) [31], Section 4 in Supp. Mat.
strange qed �0.0136(86)(76) [5], Table 15
charm qed 0.0182(36) [43]
bottom 0.271(37) [44]
tail from data-driven 28 � 1 27.59(17)(9)[26] this work, Equation (50)

total 714.1(2.2)(2.5)[3.3]

Table 10: List of all contributions to aµ.

light 04 � 10 206.57(25)(60)[65] this work, Equation (27)
disconnected 04 � 10 �1.084(22)(49)[53] this work, Equation (28)
strange 04 � 10 27.08(9)(9)[13] this work, Equation (36)
charm 04 � 10 2.94(11)(17)[20] this work, Equation (40)
light qed 0.035(40)(44) [5], Table 17
light sib 0.753(40)(16) [5], Table 17
disconnected qed �0.117(17)(6) [5], Table 17
disconnected sib �0.237(9)(6) [5], Table 17
strange qed �0.0050(35)(37) [5], Table 17

total 235.94(29)(63)[70]

Table 11: List of all contributions to the intermediate-window aµ,04�10.

5.6 Other contributions and total

Until now we discussed the light, strange, charm and disconnected contributions to aµ,00�28 in the isospin-
symmetric limit. All the remaining contributions were already considered in our 2020 work and we plan
to use them here. They are listed in the second part of Table 10.

We have to keep in mind, that the values in our 2020 work correspond to the total aµ instead of
aµ,00�28. It turns out however, that for all of these contributions the di↵erence is well inside the quoted
errors. In case of the isospin-breaking contributions we chose a time-cut, tc, after which the propagator
was set to zero, and we were looking for a plateau as a function of tc within the given statistical error. In
all contributions the plateaus set in earlier than 2.8 fm, so it is safe to take the total aµ values of these
contributions as estimates for aµ,00�28.

Now we add up the light, disconnected contributions in the 00 � 28 window determined on the lattice
in this work, the other contributions from previous lattice computations, and finally the 28 � 1 window
from the data-driven approach. These are the first, second and third parts of Table 10. Altogether we
get for the leading-order hadronic vacuum polarization contribution to the muon magnetic moment:

aµ = 714.1(2.2)(2.5)[3.3] (41)

with statistical, systematic and total errors, which is the final result of this work.
We di↵er from our 2020 value by 6.5 units. Is there any tension between the new and the old

results? Let us first consider the di↵erent types of correlations between our current and previous analyses.
Statistical correlations between 2020 and this work are diluted to a large extent, since we have a new lattice
spacing and we work with the aµ,00�28 window variable instead of aµ. The major source of systematics
are very di↵erent in the two analyses: in 2020 it arose from the di↵erence of the SRHO and NNLO
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loops, only if they are attached to photons. Dots represent coordinates in position space, a box indicates
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they correspond to our “reference” system size given by Lref = 6.272 fm spatial and Tref = 9.408 fm
temporal lattice extents. We also explicitly compute the finite-size corrections that must be added to
these results, these are given separately in the lower right panel. The first error is the statistical and the
second is the systematic uncertainty; except for the contributions where only a single, total error is given.
Errors are s.e.m.
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BMW-DMZ ’24 vs g � 2 measurement

175 180 185 190 195 200 205 210 215
aµ ⇥ 1010 � 11659000
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BaBar
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This work

Experimental avg.
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Indicates standard model confirmed to 0.37 ppm !

(Fine print: result should be confirmed by others. . . )

Laurent Lellouch g � 2 @ KEK, 7th TI workshop, September 11, 2024

https://drive.google.com/file/d/1aAi9CWSPVEYv2SMMxuGQT3l3KmEKGwKu/view?usp=d
Podcast (generated by AI) on the current status of muon g-2: 

Indicates Standard Model confirmed to 0.37 ppm!
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Hartmut	Wittig

La#ce	result	for	the	hadronic	running	of	α

2

Star<ng	point:	Results	for	 	for	Euclidean	momenta		Δαhad(−Q2) 0 ≤ Q2 ≤ 7 GeV2
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Figure 11. The deviation of the rational approximation of ∆–had (left) and ∆had sin2 ◊W (right)
from the data, plotted as a function of Q2 and compared to the statistical error (blue-shaded area)
as well as di�erent sources of systematic uncertainty: fit model (orange-bordered area), scale setting
(green-bordered area) and isospin breaking (red-bordered area). The plots show that statistical
errors increase when a term of O

!
a3"

is added to the leading discretization e�ect of O
!
a2"

in the fit
model for Q & 2.5 GeV2. The gray lines represent the total error.

reproduce the error band very accurately.7 For  ̄Z“ , the rational approximation is

 ̄Z“(≠Q2) ¥
0.026 3(6) x + 0.025(5) x2 + 0.000 89(34) x3

1 + 2.94(29) x + 1.12(27) x2 + 0.015(8) x3 , x = Q2

GeV2 , (4.13)

with the correlation matrix

corrZ“

Q

ccccccccca

a1
a2
a3
b1
b2
b3

R

dddddddddb

=

Q

ccccccccca

1
0.48 1
0.278 0.734 1
0.619 0.964 0.644 1
0.402 0.983 0.815 0.91 1
0.236 0.416 0.882 0.389 0.486 1

R

dddddddddb

. (4.14)

The deviation of the approximation from our measured values is compared to the
di�erent sources of uncertainty in figure 11. We find that the deviation is always much
smaller than the combined error: For instance, for Q2 > 1.5 GeV2 it is less than 1/5 of the
combined error, and less than 0.3 % of that of the actual data.

7
For both eqs. (4.11) and (4.13), we observe that a rational approximation with the same coe�cients and

errors except for b3 = 0 approximates the data equally well. We choose to include the b3 since this makes

the extrapolation to higher Q2
better behaved. However, we stress that the rational approximations in

eqs. (4.11) and (4.13) are valid only in the range of Q2
Æ 7 GeV

2
and are not suitable for an extrapolation

outside this range.
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Figure 12. Left, upper panel: ratio of the hadronic running ∆–had computed by BMWc [21]
divided by our results, for five di�erent momenta. In addition to the total contribution, we show
the isovector (I = 1), isoscalar (I = 0) and charm quark components. Left, lower panel: the total
hadronic running ∆–(5)

had from various phenomenological estimates [12, 31, 134] and the lattice result
of ref. [21], normalized by the result of this work. Right: Compilation of results for the four-flavor
∆–had lattice computations [6, 21] (above) and the five-flavor ∆–(5)

had phenomenological estimates
(below) at selected values of Q2. The gray vertical error band for the result of this work includes
the small bottom quark contribution as an additional systematic error, see section 5.1 for details.

result in our comparison since the disconnected contribution has not been determined in
that reference.

In the lower left panel of figure 12 we show the ratios of three recent phenomenological
determinations of ∆–(5)

had(≠Q2) and the rational approximation of our result as continuous
curves. Our result lattice results for ∆–had(≠Q2) includes the contributions from u, d, s

and c quarks. In order to account for the contributions from bottom quarks that are needed
to complete the estimate for ∆–(5)

had(≠Q2), we use results by the HPQCD collaboration
for the lowest four time moments of the HVP [135]. We determine the contribution from
bottom quarks by constructing Padé approximants from the moments, which results in a
few-permil e�ect on the total hadronic running of the coupling (up to 2.6 permil at the
largest Q2 = 7 GeV2). This e�ect is larger than the 0.4 permil e�ect reported for the HVP
contribution to the muon g ≠ 2 [136] due to the fact that the running coupling scale Q2

is not well separated from the bottom quark mass, in contrast to the muon mass case.8
However, this e�ect is a small fraction of the percent-level total error on ∆–had(≠Q2) and
we include it as an additional source of systematic error.

Results from Davier et al. [12, 137] (labellel “DHMZ data”), Keshavarzi et al. [31, 138]
(KNT18 data), and based on Jegerlehner’s alphaQEDc19 software package [13, 134] show
good agreement among each other, but are between 3 and 6 % lower than our estimate.9

8
As a crosscheck, we have reproduced the bottom quark contribution to the muon g ≠ 2 reported by

HPQCD [136].

9
The estimate of ∆–(5)

had(≠Q2
) in the space-like region corresponding to ref. [12] was kindly provided
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• Mainz/CLS	and	BMWc	(2017)	

differ	by	2–3%	at	the	level	of	1–2σ

• Tension	between	Mainz/CLS	and	

phenomenology	by	 		for	∼ 3σ
Q2 ≳ 3 GeV2

• Tension	increases	to 		for	

		

(smaller	sta6s6cal	error	due	to	ansatz	

for	con6nuum	extrapola6on)

≳ 5σ
Q2 ≲ 2 GeV2

Systema6c	uncertain6es	from	fit	ansatz,	scale	se#ng,	charm	quenching,	isospin-breaking	and	missing	

boSom	quark	contribu6on	(five	flavour	theory)	included	in	error	budget

[Cè	et	al.,	arXiv:2203.08676]

[T.	San	José,	TUE	17:10]
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Isospin-breaking corrections in -decaysτ
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Results - Preliminary

Preliminary from 48I ensemble
phys. pions, a

≠1 ƒ 1.73 GeV, 17 configs
cross-checks of code, data, analysis still missing
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Summary and Outlook

Tremendous progress in lattice calculations of HVP (and HLbL!) contributions

New BMW-DMZ calculation to 0.46% w/ fully blinded analysis, confirming the 
SM to 0.37 ppm. It needs confirmation by other groups

An update of the White Paper is aimed for the beginning of 2025

Good agreement between lattice calculations for various windows

Awaiting new BaBar, KLOE, BESIII, Belle II, CMD3, SND2 data/analysis to 
clarify tensions in π+π−

 experiment MUonE very important for experimental cross-check 
and complementarity w/ LQCD
μe → μe

Dispersive approach

Tensions in fi+fi≠ channel

Large tensions among experiments: BaBar, KLOE, now CMD3

[CMD3 2302.08834]
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Figure 36: The ⇡+⇡�(�) contribution to ahad,LO
µ from

energy range 0.6 <
�

s < 0.88 GeV obtained from this
and other experiments.

Experiment a�+��,LO
µ , 10�10

before CMD2 368.8 ± 10.3
CMD2 366.5 ± 3.4
SND 364.7 ± 4.9
KLOE 360.6 ± 2.1
BABAR 370.1 ± 2.7
BES 361.8 ± 3.6
CLEO 370.0 ± 6.2
SND2k 366.7 ± 3.2
CMD3 379.3 ± 3.0

Table 4: The ⇡+⇡�(�) contribution to ahad,LO
µ

from energy range 0.6 <
�

s < 0.88 GeV ob-
tained from this and other experiments.

in Table. 4, where the first line in the table corresponds to the combined result of all
measurements before CMD-2 experiment.

The pion formfactor mesuarements from the di�erent RHO2013 and RHO2018 seasons
of the CMD-3 give the statistically consistent result in the ahad,LO

µ integral as:

a��,LO
µ (RHO2013) = (380.06 ± 0.61 ± 3.64) � 10�10

a��,LO
µ (RHO2018) = (379.30 ± 0.33 ± 2.62) � 10�10

a��,LO
µ (average) = (379.35 ± 0.30 ± 2.95) � 10�10 (18)

Two CMD-3 values are in very good agreement in spite of a very di�erent data taking
conditions (as was discussed earlier). The combined CMD-3 result was obtained in very
conservative assumption of 100% correlation between systematic errors of two data sets. The
CMD-3 result is significantly higher compared to other e+e� data, both energy scan and ISR.
Although this evaluation was done in the limited energy range only and the full evaluation
of ahad,LO

µ is yet to be done, it is clear that our measurement will reduce tension between
the experimental value of the anomalous magnetic moment of muon and its Standard Model
prediction.

9. Conclusions

The measurement of e+e� � �+�� cross section was performed by the CMD-3 exper-
iment at the VEPP-2000 collider in the energy range

�
s = 0.32 ÷ 1.2 GeV in 209 energy

points. The analysis was based on the biggest ever used collected statistics at � resonance
region with 34 � 106 �+�� events at

�
s < 1 GeV. The large statistics allows to study the

possible systematic e�ects in details. The development of the analysis strategy, cross-checks

42

very di�cult to combine di�erent experiments
what is the error of fifi contribution to aµ?
motivates even more first-principles Lattice QCD calculations

6 / 17

Awaiting Fermilab  measurement of  in 2025 and J-PARC entirely 
new method measurement

∼ 0.1 ppm aμ
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Pragmatic hybrid strategy for further full HVP results
Use LQCD in one-sided time window up to t1 .  
Add in data-driven result for t1 to ∞.

Totals should agree for different t1  
• test of validity of data-driven (and LQCD) 
• choose smallest error or fit to a constant

Smaller t1 : reduces lattice stat. and finite vol. error 
but increases input from data-driven tail
Larger t1 : CMD3/KNT19 tension falls:  <0.3% total HVP for t1 ≥ 2.5 fm

Thanks to A. Keshavarzi 
and P. Lepage

Using 2019 FHM LQCD results for 
one-sided windows (2207.04765):
• totals are flat in t1 for CMD3 2!
• total w. CMD-3 agrees with BMW/
DMZ ’24 for all values of t1

• newer lattice data have much better  
uncertainties for t1 ≳ 2fm

Hybrid strategy best to optimise 
uncertainty on total HVP?
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talk by C. Davies @ Lattice 2024


