LIVERSITY OF

3rd Liverpool Workshop on Muon Precision Physics, November 12-14, 2024

Status of hadronic cross section experiments at low-energy e^+e^- colliders

Precision Physics, Fundamental Interactions and Structure of Matter

Achim Denig Institute for Nuclear Physics Johannes Gutenberg University Mainz

Hadronic Cross Section and Hadronic Vacuum Polarization

Hadronic vacuum polarization ⁻

Anomalous magnetic moment of the muon $(g-2)_{\mu}$

Running electromagnetic fine structure constant

Hadronic Vacuum Polarization (HVP) for $(g-2)_{\mu}$ from dispersive Analysis $a_{\mu}^{SM} = 11\ 659\ 181.0\ (4.3) \times 10^{-10}$

Estimate of (g-2) Theory Initiative based on dispersive approach (including higher orders): (693.1 ± 4.0) \cdot 10⁻¹⁰ was (\cong 687 ... 694 ± 2.4 ... 4.1) \cdot 10⁻¹⁰

Measurements on R – Energy Scan vs. Initial State Radiation $^{JG|U}$

5

Measurements on R – Energy Scan vs. Initial State Radiation JGU

Initial State Radiation – tagged vs. untagged

Two independent normalization methods:

1) normalization to L_{int} (obtained from Bhabha events) and H_{rad}; subtraction of background (μ + μ - γ , ...)

$$\sigma_{bare}(e^+e^- \to \pi^+\pi^-) = \underbrace{\sum_{int} N_{\pi\pi\gamma}/\epsilon_{exp}}_{L_{int} \cdot H_{rad} \cdot \delta_{vac} \cdot (1+\delta_{FSR})}$$
2) normalization to $\mu+\mu-\gamma$ events, i.e. R ratio $(\pi\pi\gamma/\mu\mu\gamma)$
 $\Rightarrow L_{int}, H_{rad}, \delta_{vac}$ cancel in ratio!
 \Rightarrow requires high statistics of $\mu+\mu-\gamma$

$$R = \frac{N_{\pi^+\pi^-}}{N_{\mu^+\mu^-}} \cdot \frac{\epsilon_{\mu^+\mu^-} \cdot (1+\delta_{\pi^+\pi^-}^{FSR})}{\epsilon_{\pi^+\pi^-} \cdot (1+\delta_{\pi^+\pi^-}^{FSR})} = \underbrace{\sum_{i=1}^{n} \frac{1}{\epsilon_{\pi^+\pi^-}} \cdot \frac{\epsilon_{\mu^+\mu^-}}{\epsilon_{\mu^+\mu^+}}}{\epsilon_{\mu^+\mu^+}} = \underbrace{\sum_{i=1}^{n} \frac{1}{\epsilon_{\mu^+\mu^+}} \cdot \frac{1}{\epsilon_{\mu^+\mu^+}}}_{i=1} = \underbrace{\sum_{i=1}^{n} \frac{1}{\epsilon_{\mu^+\mu^+}} \cdot \frac{1}{\epsilon_{\mu^+\mu^+}}}}_{i=1} = \underbrace{\sum_{i=1}^{n} \frac{1}{\epsilon_{\mu^+\mu^+}}}}_{i=1} = \underbrace{\sum_{i=1}^{n} \frac{1}{\epsilon_{\mu^+\mu^+}}}}_{i=1} = \underbrace{\sum_{i=1}^{n} \frac{1}{\epsilon_{\mu^+\mu^+}} \cdot \frac{1}{\epsilon_{\mu^+\mu^+}}}}_{i=1} = \underbrace{\sum_{i=1}^{n} \frac{1}{\epsilon_{\mu^+\mu^+}}}_{i=1} = \underbrace{\sum_{i=1}^{n} \frac{1}{\epsilon_{\mu^+\mu^+}}}$$

Overview Experiments

Experiment	Published Method	Normalization	Separation π - μ	Trackmass x+x- γ
KLOE $\sqrt{s} \sim 1$ GeV	ISR untagged ISR tagged ISR untagged	Luminosity + H _{rad} Luminosity + H _{rad} μ+μ-γ	Kinematics Track Kinematics Track Kinematics Track	
BABAR √s~10 GeV	ISR tagged	μ+μ-γ	Particle ID	
BESIII √s~4 GeV	ISR tagged	Luminosity + H _{rad}	Particle ID (ML)	M _{trk} [MeV]
BELLE-II √s~10 GeV				 Sighal (training sample) Sighal (training sample) Background (test sample) Background (training sample)
CMD-2/CMD-3	Scan < ~1 GeV	e+e-	Kinematics Track Kinematics EMC	Artificial Neural Network
SND	Scan < ~1 GeV	e+e-	Kinematics EMC	0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 CEMIDANN reprose

Overview Experiments

- Energy Scan CMD-2 0.8%*
 - * limited in addition by statistics

Achim Denig

11

- fit over all data sets taking into account correlations

Keshavarzi, Nomura, Teubner (KNT) - data subjected to a clustering procedure

- systematic correlat. propagated via pseudo-data (MC)

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
[3.7,∞) GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\text{DV+QCD}}$	692.8(2.4)	1.2

 $→ a_{\mu}^{HVP,LO} = 693.1(2.8)_{exp}(2.8)_{syst}(0.7)_{pQCD} = 693.1(4.0) \times 10^{-10}$ Whitepaper estimate experimental uncertainties: domitated by 2π uncertainty Achim Denig BABAR, respectively BABAR, respectively BABAR, respectively

Merging of KNT, DHMZ estimates	put from ChPT/disp	ersive fits	: CHHKS	for 2π, 3π channels;
	DHMZ19	KNT19	Difference	
up to 2023:	507.85(0.83)(3.23)(0.55) 46.21(0.40)(1.10)(0.86)	504.23(1.90) 46.63(94)	$3.62 \\ -0.42$	>:-(
nig debate up to BABAN.	13.68(0.03)(0.27)(0.14) 18.03(0.06)(0.48)(0.26)	13.99(19) 18.15(74)	-0.31	
Bis right? KLOP	(3.03(0.00)(0.43)(0.20) (23.08(0.20)(0.33)(0.21) (23.08(0.20)(0.18)(0.15)	23.00(22)	0.08	
Who is the $\pi^0\gamma$	4.41(0.06)(0.13)(0.13)	4.58(10)	-0.17	
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46	
[1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00	
$J/\psi,\psi(2S)$	7.76(12)	7.84(19)	-0.08	
$[3.7,\infty)$ GeV	17.15(31)	16.95(19)	0.20	
$\begin{array}{c} \text{Total } a_{\mu}^{\text{HVP, LO}} \\ \end{array} \qquad \qquad 694.0(1.$	$0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\rm DV+QCD}$	692.8(2.4)	1.2	> reasonable agreement

→ $a_{\mu}^{HVP,LO} = 693.1(2.8)_{exp}(2.8)_{syst}(0.7)_{pQCD} = 693.1(4.0) \times 10^{-10}$ Whitepaper estimate experimental uncertainties: energy region [1.8;3.7] GeV; usage of pQCD by KLOE/BABAR tension: domitated by 2π uncertainty DHMZ, while KNT follows data-driven approach leaving out KLOE or

SM – Theory vs. Experiment: $(g-2)_{\mu}$

231903

112002

132

109

 $|F_{\pi}|^{2} = \left(\frac{N_{\pi^{+}\pi^{-}}}{N_{e^{+}e^{-}}} - \Delta^{bg}\right) \cdot \frac{\sigma^{0}_{e^{+}e^{-}} \cdot (1 + \delta_{e^{+}e^{-}}) \cdot \varepsilon_{e^{+}e^{-}}}{\sigma^{0}_{e^{+}e^{-}} \cdot (1 + \delta_{\pi^{+}\pi^{-}}) \cdot \varepsilon_{\pi^{+}\pi^{-}}}$

(2024)

(2024)

- 15
- New result from CMD-3 collaboration @ VEPP-2000 collider in Novosbirsk
- Energy scan (from threshold up to 1.2 GeV) method, no ISR!
- Form factor extraction via selection of $\pi\pi$ /ee ratio
- Highest statistics data sample of all experiments, systematic uncertainty 0.7% on ρ peak
- \rightarrow Significant deviation from previous ISR and energy scan experiments (CMD-2)! Why?

Courtesy Aidan Wright

09/24: KEK Workshop Muon q-2 Theory Initiaitve

16

Scrutiny of CMD-3 result within the Theory Initiative

- Very open replies by F. Ignatov \rightarrow no major showstopper observed
- Very powerful analysis with many and impressive internal cross checks
- Monte-Carlo generator for energy scan cannot be independently varified

CMD-3 Compatibility with other Experiments for HVP Integral

→ Significant deviation from previous ISR and energy scan experiments (CMD-2)! Why?

JGU

BABAR Radiative Correction Studies

Detailed study of NLO and NNLO radiative corrections

- Kinematic fits for $\pi^{+}\pi^{-}\gamma_{ISR,LA}\gamma(\gamma)$, $\mu^{+}\mu^{-}\gamma_{ISR,LA}\gamma(\gamma)$
- Comparison with PHOKHARA (NLO full correction) and AfkQED (collinear approximation beyond LO) generators
- → NNLO radiation observed at 3.5% level (missing in PHOKHARA)
- → Phokhara prediction for small angle ISR photons at NLO too high by ~25% (AfkQED fits better to data)

Phvs.

Rev. D 108, L111103

GL

19

Eur. Phys. J. C 84, 721 (2024)

- BABAR: rather inclusive selection and therefore weak dependence from PHOKHARA → small effect on published BABAR result due to PHOKHARA NLO limitations
 - however: in original BABAR 2π paper 2% correction applied to AfkQED due to statement that PHOKHARA provides better NLO correction \rightarrow claim: only valid for acceptance

KLOE/BESIII: - less inclusive selection regarding NLO

→ claim: large effects due PHOKHARA NLO limitations of up to 3.2% in the case of BESIII

However, scenarios need to be taken into account:

1: NNLO interference terms (1) dominate \rightarrow large effects

2: NNLO interference terms (2) dominate

→ significantly reduced effects on experimental analyses So far no explicit calculation of these NNLO interference effects

09/24: KEK Workshop Muon g-2 Theory Initiaitve KLOE / BESIII Response to PHOKHARA Shortcomings

20

Investigation of kinematic cuts, which are sensitive to NLO corrections: Trackmass (KLOE), χ^2 (BESIII)

Radio-MonteCarlow Initaitive with detailed comparisons

- KLOE has presented a good agreement between various MC generators for realistic acceptance cuts and also in the case of the kinematic trackmass cut for KLOE-10
- BESIII has carried out a full detector simulations for various MC generators and a data-PHOKHARA comparison for $e^+e^- \rightarrow \mu^+\mu^-\gamma$ in the χ^2 distribution; furthermore it has been demonstrated that the published analysis is largely inclusive in higher order corrections

ightarrow scenario 2 from DHLMZ23 paper strongly preferred

Overview Experiments – Past and Future

renig

Experiment	Published Method	Normalization	Separation π - μ - e	Future	
KLOE	ISR untagged ISR tagged ISR untagged	Luminosity Luminosity μ+μ-γ	Kinematics Track Kinematics Track Kinematics Track	ISR untagged μ+μ-γ statistics x 7	<mark>0.4%</mark>
BABAR	ISR tagged	μ+μ-γ	Particle ID	ISR tagged, separation by polar angle, statistics x 2	<0.5%
BESIII	ISR tagged	inosity	Particle ID (ML)	ISR tagged, μ+μ-γ, statistics x 7, 1C kin. fit	0.5%
BELLE-II	or in preparation	niques,		ISR tagged, μ+μ-γ, Particle ID	<mark>0.5%</mark>
New analys	ators, new tech	25,	Kinematics Track Kinematics EMC	overall improvements	0.3%
awareness	to (N) rgy scan	e+e-	Kinematics EMC	overall improvements ML for π – e separation	0.6%

 $s'=m_{
m had}^2=s-2E_\gamma\,\sqrt{s}$ m Hadrons e

Inclusive R-Measurement via Initial State Radiation

PhD N.J.P. Berger (2006, Stanford) PhD project, Th. Lenz (JGU Mainz)

$$R_{\mathsf{had}}(s) = rac{1}{\sigma_{\mu^+\mu^-}} \cdot rac{\mathcal{N}_{\mathsf{had}} - \mathcal{N}_{\mathsf{bkg}}}{\mathcal{L} \cdot oldsymbol{arepsilon}_{\mathsf{had}} \cdot (1 + \delta)}$$

- Energy range covered: $2.2 < \sqrt{s} < 3.7 \text{ GeV}$
- Statistical uncertainty <0.5%
 Systematic uncertainty <2.6% below 3.1 GeV ~3.0% above
- Above 3.4 GeV deviation observed with:
 KEDR/Novosibirsk on the level of 1.9σ
 - pQCD theory on the level of 2.7 σ

World's most precise R_{incl} measurement ! Some deviations from pQCD seen ?! Much more data will be published shortly !

Analysis strategy: select all events with ≥ 2 tracks

Reject back-to-back 2-prong events (Bhabha, μ+μ-)

IG

 Remaining background from ISR and QED events subtracted from MC

Messages learnt from Inclusive R Measurement

- Selection requires ≥ 2 tracks, which are not back-to-back Detector acceptance starts above 21°
- \rightarrow For low-multiplicity final hadronic states ($\pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^0\pi^0$, ...), the probability to be not selected large relatively large
- \rightarrow Total event efficiency at 60% 70% level

Efficiency

For the determination of the event efficiency, a precise MC generator for $e^+e^- \rightarrow Hadrons$ is needed (possible model dependence difficult to estimate)

Inclusive ISR with detection of ISR photon only

$$s'=m_{
m had}^2=s-2{\it E_{\gamma}}\,\sqrt{s}$$

New Inclusive Approach using ISR

Event selection:

- Select 1 high-energetic photon > 1.2 GeV ≡ ISR photon at large polar angle [cosΘ_{ISR}] < 0.8 → Restricts hadronic mass spectrum < 2.7 GeV
- Require (for time being) \geq 1 charged track in the event \rightarrow Does currently not include fully neutral states (e.g. $e^+e^- \rightarrow \pi^0\gamma$)
- ISR boost confines particles into narrow cone
 → Very high detection efficiency
- Less reliant on description of hadronic MC
 → ISR description in MC under control
- Single measurement down to threshold (does not need scan)
- Measurement fully inclusive for Final State Radiation (FSR) and higher order corrections of ISR
- In principle able to measure fully neutral channels

New Inclusive Approach using ISR: Efficiency

Event selection:

- Select 1 high-energetic photon > 1.2 GeV ≡ ISR photon at large polar angle [cosΘ_{ISR}] < 0.8 → Restricts hadronic mass spectrum < 2.7 GeV
- Require (for time being) ≥ 1 charged track in the event

ightarrow Does currently not include fully neutral states (e.g. $e^+e^-
ightarrow \pi^0\gamma$)

- ISR boost confines particles into narrow cone
 → Very high detection efficiency
- Less reliant on description of hadronic MC
 → ISR description in MC under control
- Single measurement down to threshold (does not need scan)
- Measurement fully inclusive for Final State Radiation (FSR) and higher order corrections of ISR
- In principle able to measure fully neutral channels

- Large smearing introduced by limited detector resolution
- Application of unfolding algorithms to recover the true spectrum
- Requires Monte-Carlo program to construct unfolding matrix Response Matrix (RM)
- Systematically testing the bias in the unfolding procedure due to wrong input Monte-Carlo Pseudo Data (PD)

Unfolding from Detector Mass Resolution

• More than 50 cross section variations in input MC tested (e.g. up to $\pm 5\%$ variation of 2π cross section) • Very stable result for unfolded spectrum • variation well within percent level (=precision goal)

With larger data sets also conversion events might be used to significantly improve mass resolution

Conclusions

Conclusions

- New Lattice as well as CMD-3 results challenging old e⁺e⁻ data
 - difference in $\pi^+\pi^-$ between CMD-3 and other expts. to be understood
 - radiative corrections are a key issue \rightarrow RadioMonteCarlow initiative!
- Have not covered other hadronic channels beyond $\pi^+\pi^-$ puzzles there as well
- Luckily, new e^+e^- data at the horizon
 - BABAR with fit to angular distributions for $\pi/\mu/e$ separation
 - KLOE with full KLOE statistics
 - BESIII with 20/fb data sample (normalization to $\mu\mu$), new ideas R_{incl} via ISR
 - BELLE-II has joined the team of ISR experiments
 - further cross checks by CMD-3 and new SND data from energy scan

Thank you !