Status and Prospects of MEG-II experiment at PSI

Probing Physics Beyond the Standard Model

MPP2024 – 3rd Liverpool workshop on Muon Precision Physics 12-14 November, 2024

Marco Grassi – INFN Pisa

Nov.14th, 2024

Outline

- Muons as probes for New Physics
- Results on $\mu^+ \rightarrow e^+ \gamma$ search (2021 data sample)
- Search for the X17 boson (released yesterday)
- Search for Axion Like Particles
- Final remarks

Outline

Muons as probes for New Physics

- Results on $\mu^+ \rightarrow e^+ \gamma$ search (2021 data sample)
- Search for the X17 boson (released yesterday)
- Search for Axion Like Particles
- Final remarks

Why to Search for $\mu^+ ightarrow e^+ \gamma$

- In SM flavour conservation is not protected by a gauge symmetry
- $\mu^+ \rightarrow e^+ \gamma$ in SM is highly suppressed because of the tiny neutrino mass
- Several BSM models predict a sizeable rate for $\mu^+ \rightarrow e^+ \gamma$

• The branching ratio is a sensitive probe of the scale of new physics $\mathfrak{B} \propto \frac{1}{\Lambda^4}$. Values up to 10^3 TeV are accessible.

1980

1970

1990

(Riv. Nuovo Cimento 41 (2018) 71)

2000

2010

2020

2030

Year

The observation of the $\mu^+ \rightarrow e^+ \gamma$ decay would constitute unambiguous experimental evidence of BSM physics

M.Grassi, MPP2024

10⁻¹⁶

10⁻¹⁷ E

1950

1960

The X17 boson

• The Atomki Experiment reported an anomaly in the angular distribution of the Internal e^+e^- Pairs Conversion of the $^7Li(p, e^+e^-)^8Be$ process

Phys.Rev.Lett.116, 042501

- The excess has been observed at $\Theta \sim 140^\circ$ for Ep = 1100 KeV
- It could be the decay of a light boson named X with
 - $\mathfrak{B}(X) = 6 \times 10^{-6}$ wrt γ production
 - $m_X = 16.70 \text{ MeV} / c^2$
 - (Phys. Rev. D 95, 035017)

If confirmed this observation would constitute direct evidence of a particle not foreseen in the SM

Nov.14th, 2024

Axion like particles

- Models with ALPs that could generate charged Lepton Flavor Violations have been recently proposed
- These models could solve the strong CP problem and provide a source for DM
- The ALP mass can be very light and the decay constant very large, however, the LFV coupling could enable experimental observation in muon decays

ALPs and MEG

• The Collaboration already published results for the process $\mu \to e^+ a \to \gamma \gamma$ with the ALP decaying in the MEG apparatus

Euro.Phys.J. C80(2020)858

• Our theorist friends have recently evaluated the MEG-II detector sensitivity in specific low beam intensity and relaxed threshold conditions for the channel $\mu \rightarrow ea\gamma$ in the case of long-lived axions

Y.Jho et Al. JHEP 10(2022)29

M.Grassi, MPP2024

Y.Ema et Al. JHEP 01(2017)096 L.Calibbi et Al. Phys.Rev.D 95(2017) 095009 M.Linster et Al. JHEP 08(2018)058 L.Calibbi et Al. JHEP 09(2021)173

Outline

- Muons as probes for New Physics
- Results on $\mu^+ \rightarrow e^+ \gamma$ search (2021 data sample)
- Search for the X17 boson (released yesterday)
- Search for Axion Like Particles
- Final remarks

Physics data acquired so far

• 2021: first physics run with the full detector first result of MEGII recently published

(Euro. Phys. J. C84(2024)216)

- 2022: Long and stable run in optimal conditions almost ready for unblinding
- 2023: Largest statistics ever acquired

(MEG total: 7.5 x 10¹⁴)

Nov.14th, 2024

MEG-II Detector's Performance Highlights

Detector's performances for 2021 analysis

Resolutions	MEG	MEG-II Proposal	MEG-II Achieved
E_e (keV)	320	100	89
θ_e (mrad)	9.4	3.7	7.2
ϕ_e (mrad)	8.7	6.7	4.1
z_e/y_e (mm) core	2.4/1.2	1.6/0.7	2.0/0.74
<i>E_γ</i> (%)[<i>w</i> <2cm)/(<i>w</i> >2cm)	2.4/1.7	1.7/1.7	2.0/1.8
$u_{\gamma}, v_{\gamma}, w_{\gamma}$ (mm)	5/5/6	2.4/2.4/5.0	2.5/2.5/5.0
$t_{e\gamma}$ (ps)	122	70	78
Efficiencies			
ε_{γ} (%)	63	69	62
ε_e (%)	30	65	67
ε_{TRG} (%)	~99		80 •

- Significant improvements over MEG
- Close, or even better, the MEG-II design values
- Further calibrations and analysis refinements will improve these figures

Nov.14th, 2024

M.Grassi, MPP2024

>90 % since 2022 close to 98% this year

$\mu^+ ightarrow e^+ \gamma$ Analysis Strategy

- Kinematics observables of the $\mu^+ \rightarrow e^+ \gamma$ decay $\overrightarrow{x_i} = (t_{e\gamma}, E_{\gamma}, E_e, \theta_{e\gamma}, \phi_{e\gamma})$
- Strategy: blind likelihood analysis
 - Blinding box: $45 < E_{\gamma} < 58 \text{ MeV}$, $|t_{e\gamma}| < 1 \text{ ns}$
 - Background events constrained from sidebands N_{RMD} , N_{ACC}
 - PDFs from sidebands and measured detector resolutions
 - Maximum Likelihood to estimate N_{sig} in the analysis region
 - $45 < E_{\gamma} < 58 \,\mathrm{MeV}$
 - $52.2 < E_e < 53.5 \text{ MeV}$
 - $|t_{e\gamma}| < 0.5 \, \mathrm{ns}$
 - $|\theta_{e\gamma}| < 40 \,\mathrm{mrad}$
 - $|\phi_{e\gamma}| < 40 \,\mathrm{mrad}$
- Two independent analyses
 - Per-event PDFs with two angular observables $heta_{e\gamma}$, $\phi_{e\gamma}$ reference
 - Constant PDFs with single relative angle $\Theta_{e\gamma}$

Nov.14th, 2024

M.Grassi, MPP2024

crosschecking

$\mu^+ ightarrow e^+ \gamma$ Analysis Strategy

- Kinematics observables of the $\mu^+ \rightarrow e^+ \gamma$ decay $\overrightarrow{x_i} = (t_{e\gamma}, E_{\gamma}, E_e, \theta_{e\gamma}, \phi_{e\gamma})$
- Strategy: blind likelihood analysis
 - Blinding box: $45 < E_{\gamma} < 58 \text{ MeV}$, $|t_{e\gamma}| < 1 \text{ ns}$
 - Background events constrained from sidebands N_{RMD} , N_{ACC}
 - PDFs from sidebands and measured detector resolutions
 - Maximum Likelihood to estimate N_{sig} in the analysis region
 - $45 < E_{\gamma} < 58 \,\mathrm{MeV}$
 - $52.2 < E_e < 53.5 \,\mathrm{MeV}$
 - $|t_{e\gamma}| < 0.5 \, \mathrm{ns}$
 - $|\theta_{e\gamma}| < 40 \,\mathrm{mrad}$
 - $|\phi_{e\gamma}| < 40 \,\mathrm{mrad}$
- Two independent analyses
 - Per-event PDFs with two angular observables $heta_{e\gamma}$, $\phi_{e\gamma}$ reference
 - Constant PDFs with single relative angle Θ_{ev}

Nov.14th, 2024

M.Grassi, MPP2024

crosschecking

$$C(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{ACC}}, x_{\text{T}}) = \frac{e^{-(N_{\text{sig}}+N_{\text{RMD}}+N_{\text{ACC}})}}{N_{\text{obs}}!}C(N_{\text{RMD}}, N_{\text{ACC}}, x_{\text{T}}) \times \prod_{i=1}^{N_{\text{obs}}} (N_{\text{sig}}S(\mathbf{x_i}) + N_{\text{RMD}}R(\mathbf{x_i}) + N_{\text{ACC}}A(\mathbf{x_i})),$$

where

- S, R and A are the PDFs
- N_{RMD} , N_{ACC} , x_T are constrained nuisance parameters
- *N_{sig}* is the signal
- *x_T* target misalignment parameter
- 3 variables are also included $t_{RDC} t_{LXe}, E_{RDC}, n_{pTC}$

Systematics

- Major sources of systematics uncertainties
 - detector misalignment
 - E_{γ} scale
 - normalisation
- Technical treatment in PDFs
 - nuisance parameter in pdf
 - random fluctuating

Effect on sensitivity

• ~5% (was 13% in MEG)

Parameter	Impact on sensitivity
$\phi_{e\gamma}$ uncertainty	1.1 %
E_{γ} uncertainty	0.9%
$\theta_{e\gamma}$ uncertainty	0.7%
Normalization uncertainty	0.6%
$t_{e\gamma}$ uncertainty	0.1%
E_e uncertainty	0.1%
RDC uncertainty	< 0.1%

Nov.14th, 2024

Normalisation

$$\mathfrak{B}(\mu^+ \to e^+ \gamma) = \frac{N_{sig}}{N_{\mu}}$$

- Normalisation factor N_{μ} = number of measured muons
- Two independent methods
 - Counting Michel positrons
 - Counting RMD
- Both acquired in parallel to $\mu^+ \rightarrow e^+ \gamma$
 - variation of the detector conditions
 - muon beam intensity

 $N_{\mu} = (2.64 \pm 0.12) \times 10^{12}$

2021 Sensitivity

- The sensitivity S₉₀ for the 2021 data sample, defined as the median of the distribution of the 90% CL upper limits computed for an ensemble of pseudo-experiments with a null-signal hypothesis, is 8.8×10⁻¹³
- Comparable to the whole data set of MEG 5.3×10⁻¹³

M.Grassi, MPP2024

Event Distribution after Unblinding

- Observed events in the analysis region = 66
- *N_{sig}* at 0
- *N_{RMD}*, *N_{ACC}*, even when not constrained, are compatible with sidebands values

Projections of Likelihood Fit

Caption

- experimental data
- ---- ACC background
- · RMD background
- signal (x4)
- best-fit PDFs

(f) relative signal likelihood

$$f_{RMD} = 0.02 , f_{ACC} = 0.98$$

$$R_{\text{sig}} = \log_{10} \left(\frac{B(\mathbf{x}_i)}{f_{\text{RMD}}R(\mathbf{x}_i) + f_{\text{ACC}}A(\mathbf{x}_i)} \right)$$

Nov.14th, 2024

Consistency Checks

- comparison of the two analyses
 Constant PDF vs Per-event PDF
- N_{RMD}, N_{ACC}, when not constrained from sidebands, are compatible with constrained values

The result

Feldman-Cousins prescription with profile likelihood ratio ordering

MEG:
$$\mathfrak{B}_{90} = 4.2 \times 10^{-13}$$
 $S_{90} = 5.3 \times 10^{-13}$

Nov.14th, 2024

Run 2024 and Perspectives

Run 2022 data close to unblinding

Nov.14th, 2024

Systematics Reduction $\theta_{e\gamma}$ and $\phi_{e\gamma}$

- better control of the BC400 target position
 - deformation controlled with photogrammetric measurements

target holes imaging with positrons •

Absolute position uncertainty from $100 \,\mu m$ to $35 \,\mu m$

(a) Year 2021.

(b) Year 2022.

the relative positioning of LXe and CDCH with cosmic ray tracks become

 $\sigma_{Z}(2021) = 410 \,\mu m$

 $\sigma_Z(2022) = 290 \,\mu m$

(it was 730 μm)

Systematics Reduction: E_{γ}

- Xe purity and MPPC PDE vary during data taking
- time-dependent non-uniformity correction have been improved

Statistics: ε_{TRG} and ε_{DAQ}

- improvements of trigger firmware, directionmatching implementation and DAQ software
 - sharper photon threshold with online trigger primitives
 - more efficient direction matching tables correlating LXe entrance face to the pTC tiles

Outline

- Muons as probes for New Physics
- Results on $\mu^+ \rightarrow e^+ \gamma$ search (2021 data sample)
- Search for the X17 boson (released yesterday)
- Search for Axion Like Particles
- Final remarks

The X17 boson

 The Atomki group confirmed the e⁺e⁻ pairs excess in the ⁸Be

 ${}^{3}H(p,e^{+}e^{-})^{4}He$

Phys.Rev.C 104(2021)044003

 $^{11}B(p,e^+e^-)^{12}C$

Phys.Rev.C 106(2022)L061601

¹¹B(p, e⁺e⁻)¹²C E. = 1.50 MeV 550 500 E = 1.70 MeV 550 E_p = 1.88 MeV 500 300 Full PDF E. = 2.10 MeV Background PD E1 IPC 250 M1 IPC 150 160

- 1. The Atomki interpretation is a new boson
 - $m_X = 16.70 \text{ MeV} / c^2$ only from 18.1 MeV resonance
- 2. With different production channels and detector techniques,
 - NA48/2 Phys.Lett.B 746(2015)178
 - NA64 Phys.Rev.D 101(2020)071101

put upper limits on the X17

- 3. Expectation revision including Standard Physics effect
 - Zhang and Miller include amplitude interference and form factors Phys.Lett.B 773(2017)159
 - Koch modifies the Bethe Block Nucl. Phys. A 1008 (2021) 122143
 - Aleksejevs computes internal pair conversion with second order loops arXIV: 2102.01127

Nov.14th, 2024

The X17 production

X17 search with the MEG-II experiment

- event signature ${}^{7}Li(p, e^+e^-){}^{8}Be$
- exploit the high-performance MEG II detectors

Thin-wall SC solenoid with a

- 0.49T both ends
- Field reduced at 15%

Integrated Trigger and DAQ system with full custom boards and crates

- 9000 channels
- Waveform digitizer at 1.6 GSPS with DRS chip
- Flexible FPGA based trigger with latency <450/pos.14th, 2024

Single volume drift chamber filled $He:\!C_4H_{10}$

- 9 layers of 192 cells at full stereo readout
- momentum resolution ~90 KeV/c

MEG II Calibration Methods

- Among the many calibration tools to calibrate the Lxe calorimeter we have a dedicated Cockcroft Walton proton accelerator
- $E_P = 440 \text{ KeV}$ to excite the 17.6 MeV line
- Very low current given the large cross section

C-W proton accelerator Up to 1 MeV proton on LiBO₄ target Energy calibration line : $p^{7}\text{Li} \rightarrow {}^{8}\text{Be} \gamma(17.6 \text{ MeV})$ XEC-pTC time alignment with line : $p^{11}\text{B} \rightarrow {}^{12}\text{C} \gamma(11.6 \text{ MeV}) \gamma(4.4 \text{ MeV})$

Nov.14th, 2024

X17 search with the MEG-II experiment

- Changes for the X17 search
 - replace the muon target with a LiPON (*) target for proton
 - remove the RDC and install a proton beamline for the CW accelerator

(*) Lithium phosphorus oxynitride ($Li_{3-x}PO_{4-Y}N_{X+Y}$)

Nov.14th, 2024

The proton beam

- Beam imaging with proton induced fluorescence on quartz crystal
- Beam centring at the spectrometer centre with dipoles
- Proton beam composed of 75% H^+ and 25% H_2^+
 - irrelevant for the MEG II standard calibration
 - increased complexity for the X17 search due to the the excitation of both resonances (17.6 and 18.1 MeV) and reduced statistics on 18.1 MeV

lon composition

Spectrometer center

The Li target

- Standard MEG II targets (LiF and LiBO₄) not adequate for background and production issues
- Calibration target: 5μm thick LiF target on 25 μm copper substrate (by Infn LNL)
- Main target:
 - $7 \mu m$ thick LiPON (*) on a 25 μm Cu substrate (implanted at PSI)
 - Copper target support for heat dissipation at 45° slant angle
 - Light carbon fiber vacuum chamber to minimize multiple scattering

- Target too thick: high energy H⁺populate the 17.6 MeV resonance
- Irregular surface, delamination from copper substrate

(*) Lithium phosphorus oxynitride ($Li_{3-X}PO_{4-Y}N_{X+Y}$)

Nov.14th, 2024

Event Type and Trigger

Event Types

- Signal: e⁺e⁻ from X17 decay
- IPC: Internal Pair Conversion (direct e⁺e⁻ creation in Be)
- EPC: γ conversion to e⁺e⁻ in matter
- Single: single tracks from γ interactions (relevant for trigger and event reconstruction)
 - Optimization between rejection of single tracks, EPC and asymmetric pairs
 - 16% efficiency on signal

Trigger

- New algorithm on FPGA: defined CDCH hit multiplicity at TDAQ level (*not used in* $\mu^+ \rightarrow e^+\gamma$ search)
- Trigger: coincidence of at least 18 hits on the CDCH and 1 hit in the pTC

Reconstruction Algorithms

MEG II algorithms optimized for e⁺ reconstruction. Included the e⁻ tracking

• Fake events, reconstructed close to $\Theta_{ee} \approx 180^{\circ}$, are removed with track quality requirements. Main source 2 segments of the same track.

- Checks of the reconstruction algorithms and the track quality requirements on simulated IPC events
- un-physical reconstruction effects removed!

Data Sample

- Data collected in Feb.2023 with $E_{beam} = 1080 \text{ KeV}$, $I_{beam} = 10 \mu \text{A}$ (+ a small sample at 440 KeV)
- 75M events collected and 300k pairs reconstructed
- event categories from 17.6 and 18.1 MeV

60% EPC

- 40% IPC
- Huge simulation effort
- Simultaneous search for X17 in both 440 KeV and 1030 KeV resonances

 needed because of the H₂⁺ content, the target thickness and the cross-section

Background and Simulation

- The Atomki Collaborators used the first model for IPC developed by Rose.
- We adopted the Zhang and Miller model, which includes E1-M1 interference and anisotropies.
 - · Good agreement with original Rose model, it differs on tails
 - Does not explain the X17 anomaly, but affects the significance

- IPC is dominant in the signal region (x100 the EPC)

Phys.Rev. 76(1949)678

Phys.Lett.B 773(2017)159

37

- · detailed detector modelling
- large statistics

Analysis Strategy

X17 Analysis

- Binned Maximum Likelihood fit
 - using template PDF histograms from detailed MC simulation
 - extensively validated on sidebands
- Likelihood parametrised in terms of relative Branching Fraction
 - Two signal PDFs for Q = 17.6 and 18.1 MeV
 - Six IPC PDFs for the two main resonances and the non-resonant 17.9 MeV, each one times the two transitions to GS and 1st excited
 - Two EPC PDFs for the two main resonances
 - One fake pairs PDF

 $\mathscr{B}(^{8}\mathrm{Be}^{*}(Q) \rightarrow ^{8}\mathrm{Be} + \mathrm{X17})$ $R_O =$ $\mathscr{B}(^{8}\mathrm{Be}^{*}(O) \rightarrow ^{8}\mathrm{Be} + \gamma)$ ⁷Li(p,γ)⁸Be astro factor energy loss in targe 3.5 3 2.5 20^L 0.2 0.4 0.8 1.2 1.4 1.6 1.8 H+ H_2 +

Unblinding

Likelihood Projections

Nov.14th, 2024

90% Confidence Regions

- Systematic effects (energy scale, resolutions, mass dependence, relative acceptance) are included as nuisance parameters
- three-dimensional confidence regions with profile likelihood ordering

• The 90% C.L. region includes the null hypothesis, indicating no significant excess

 $R_{17.6} < 1.8 \times 10^{-6}$ corresponding to $N_{sig}(17.6) < 200$ $R_{18.1} < 1.2 \times 10^{-5}$ corresponding to $N_{sig}(18.1) < 230$

Test of the Atomki observation: p-value 6.2%

Nov.14th, 2024

X17 Search Conclusion

- The ${}^{7}Li(p, e^{+}e^{-}){}^{8}Be$ process has been successfully studied with the MEG II detector
- No significant signal of a new particle decaying to e+e- was found in our data
- The reported observation by Atomki was tested and excluded at 94%

Perspectives

- Two major improvements will enable distinct studies of the 2 resonances
 - A new LiPON target 2 μm thick has been produced at PSI
 - Separation and collimation of H_2^+ have already been achieved

Outline

- Muons as probes for New Physics
- Results on $\mu^+ \rightarrow e^+ \gamma$ search (2021 data sample)
- Search for the X17 boson (released yesterday)
- Search for Axion Like Particles
- Final remarks

$\mu \rightarrow e^+ a \rightarrow \gamma \gamma$ Search

- Published with MEG
- Exploit the LXe imaging capability
- The ALP decay vertex is not reconstructed.
- explored region:
 - $m_a = 20 \div 45 \, {\rm MeV}/{\rm c^2}$
 - decay length < 1 cm
- Reduced beam intensity

 5 events were found with no statistical significance including look-elsewhere effect

$\mu \rightarrow e^+ a \rightarrow \gamma \gamma$ Search

With MEG II we have 10x more statistics and better Lxe front face imaging

Nov.14th, 2024

$$\mu \rightarrow e^+ a \gamma$$
 Search

a

 e^+

m

- The event topology is similar to the Radiative Muon Decay
- Search in the invariant mass square of the couple $e^+\gamma$ at $m^2\approx 0$ for time coincident emission

$\mu \rightarrow e^+ a \gamma$ Search

- Acceptance increases lowering the E_{γ} threshold
- Constraint by DAQ rate < 40 Hz</p>
- Accidental background (dominant with the MEG beam) becomes negligible at reduced beam intensity
- reduced beam intensity data were taken for calibration purposes
- a further optimized sample has been collected in 2024 with $E_{\gamma} > 14 \text{ MeV}$

Year	$R_{\mu} \left[\mu / \mathrm{s} ight]$	Time (sec.)	E_{γ} [MeV]	k _{ALP}
2021	1.0×10^{6}	322080 (~ 3.7 <i>d</i> .)	20.0	4.9×10^{7}
2022	8.7×10^{5}	193421 (~ 2.2 <i>d</i> .)	20.0	2.5×10^{7}
2023	2.0×10^6	234790 (~ 2.7 <i>d</i> .)	18.0	8.5×10^{7}

MEG II estimated sensitivity Total normalization factor $k_{ALP}^{tot} = 1.59 \times 10^{8}$ Single event sensitivity $S_{ALP}^{tot} = \frac{1}{k_{ALP}^{tot}} = 6.29 \times 10^{-9}$

Nov.14th, 2024

Lower Limit Estimates

Outline

- Muons as probes for New Physics
- Results on $\mu^+ \rightarrow e^+ \gamma$ search (2021 data sample)
- Search for the X17 boson (released yesterday)
- Search for Axion Like Particles
- Final remarks

Final Remarks

- The MEG II detector, with resolutions and efficiencies close or better than the design values, is operated at PSI
- The $\mu^+ \rightarrow e^+ \gamma$ search with the 2021 data sample has been published with no evidence of signal
- A data sample 7 times larger has been already acquired
- X17 and Axion Like Particle searches demonstrated the MEG II detector's sensitivity to phenomena beyond the SM