Charged Lepton Flavour Violation and Flavor Model Building

Admir Greljo

14.11.2024, 3rd Liverpool Workshop on Muon Precision Physics 2024

$\mathscr{L}_4^{\text{SM}}$ sans Yukawa: $U(3)_q \times U(3)_u \times U(3)_d \times U(3)_l \times U(3)_e$

$\mathscr{L}_4^{\mathrm{SM}}$: Accidental symmetries

$$\mathscr{L}_4^{\text{SM}}$$
 sans Yukawa: $U(3)_q \times U(3)_u \times U(3)_d \times U(3)_l \times U(3)_e$

$$\mathscr{L}_{4}^{\text{Yuk}} = \bar{q} V^{\dagger} \hat{Y}^{u} \tilde{H} u + \bar{q} \hat{Y}^{d} H d + \bar{l} \hat{Y}^{e} H e$$

 $[U(3)^5$ transformation and a singular value decomposition theorem]

$$\mathscr{L}_4^{SM}$$
: $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$

Lepton family number conservation

$$\mathscr{L}_4^{\mathrm{SM}}$$
: Accidental symmetries

$$\mathscr{L}_4^{\text{SM}}$$
 sans Yukawa: $U(3)_q \times U(3)_u \times U(3)_d \times U(3)_l \times U(3)_e$

$$\mathscr{L}_{4}^{\text{Yuk}} = \bar{q} V^{\dagger} \hat{Y}^{u} \tilde{H} u + \bar{q} \hat{Y}^{d} H d + \bar{l} \hat{Y}^{e} H e$$

 $[U(3)^5$ transformation and a singular value decomposition theorem]

$$\mathscr{L}_4^{SM}$$
: $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$

Lepton family number conservation

- Λ_{UV}^{-1} truncation at the $[\mathscr{L}^{\text{SMEFT}}] \leq 4 \implies \text{Exact}$ accidental symmetries
- Beyond this picture, νSM : $m_{\nu} \neq 0, U_{PMNS} \neq 1$ introduces lepton flavor violation (LFV)

cLFV

- Lepton family number violation in processes without neutrinos: $\mu \rightarrow e\gamma, \mu \rightarrow 3e, \mu N \rightarrow eN, \tau \rightarrow \mu\gamma, \dots, K_L \rightarrow \mu e, \dots, h \rightarrow \tau\mu, \dots$
- Tiny breaking due to neutrinos in the minimal νSM realizations: $\mathscr{B}(\mu \to e\gamma) \sim 10^{-54}$ strong GIM suppression due to $\Delta m_{\nu} \ll m_W$ \implies cLFV is a null test of the SM

cLFV

- Lepton family number violation in processes without neutrinos: $\mu \rightarrow e\gamma, \mu \rightarrow 3e, \mu N \rightarrow eN, \tau \rightarrow \mu\gamma, \dots, K_L \rightarrow \mu e, \dots, h \rightarrow \tau\mu, \dots$
- Tiny breaking due to neutrinos in the minimal νSM realizations: $\mathscr{B}(\mu \to e\gamma) \sim 10^{-54}$ strong GIM suppression due to $\Delta m_{\nu} \ll m_{W}$ \implies cLFV is a null test of the SM

No irreducible SM background

Advantages:

Future observation ⇒
 unambiguous New Physics

<u>Disadvantage</u> :

• The dim 6 EFT effect scales as Λ^{-4} since $A_{SM} = 0$, while, for example in QFV, it is Λ^{-2}

cLFV

- Lepton family number violation in processes without neutrinos: $\mu \rightarrow e\gamma, \mu \rightarrow 3e, \mu N \rightarrow eN, \tau \rightarrow \mu\gamma, \dots, K_L \rightarrow \mu e, \dots, h \rightarrow \tau\mu, \dots$
- Tiny breaking due to neutrinos in the minimal νSM realizations: $\mathscr{B}(\mu \to e\gamma) \sim 10^{-54}$ strong GIM suppression due to $\Delta m_{\nu} \ll m_{W}$ \implies cLFV is a null test of the SM

No irreducible SM background

Advantages:

 Future observation ⇒ unambiguous New Physics <u>Disadvantage</u> :

- The dim 6 EFT effect scales as Λ^{-4} since $A_{SM} = 0$, while, for example in QFV, it is Λ^{-2}
- cLFV already sets **stringent** constraints on BSM: Muon beams are so intense!
- Future experimental prospects are exciting! Davidson et al., 2209.00142 *an order of magnitude on Λ is huge; think about the FCC

The Flavour Puzzle

The Flavour Puzzle

The Flavour Puzzle

- Our goal: Explain the many hierarchies observed in masses and mixings from a few (or no) UV hierarchies.
- Tradeoff: Simple UV realization versus how well it produces the SM flavor

Approximate global U(2)

Barbieri et al; hep-ph/9512388, hep-ph/ 9605224, hep-ph/9610449, ...

Our revision:

AG, Thomsen; <u>2309.11547</u>

Antusch, AG, Stefanek, Thomsen; 2311.09288

AG, Thomsen, Tiblom; 2406.02687

Exact symmetry limit

$U(2)_L$: Singular value decomposition

 $Y \equiv L_f \hat{Y} R_f^{\dagger}$

$U(2)_L$: Singular value decomposition

 $Y \equiv L_f \hat{Y} R_f^{\dagger}$

$U(2)_L$: Singular value decomposition

$$Y \equiv L_f \hat{Y} R_f^{\dagger}$$

Perturbative diagonalisation: $Y^{(1)} = L_f^{(0)} \hat{Y} R_f^{(1)\dagger}$ $\hat{Y} \sim \begin{bmatrix} b & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad L_f^{(0)} \sim \begin{bmatrix} 1 & b/a & b \\ & 1 & a \\ & & 1 \end{bmatrix}$ Impose $U(2)_{q+\ell}$: AG, Thomsen; 2309.11547

Quarks

$$\begin{pmatrix} q_L^1 \\ q_L^2 \\ q_L^2 \end{pmatrix} \sim \mathbf{2}_{+1} \quad \text{all other singlets}$$

• Both $\hat{\mathbf{Y}}_u$ and $\hat{\mathbf{Y}}_d$ hierarchical

• $V_{\rm CKM} \approx {\rm L}_u^{(0)\dagger} {\rm L}_d^{(0)}$ hierarchical

Leptons $\begin{pmatrix} \ell_L^1 \\ \ell_L^2 \\ \ell_L^2 \end{pmatrix} \sim 2_{+1}$ all other singlets • Hierarchical \hat{Y}_e *needs neutrino

*needs a different structure in the neutrino sector to get large PMNS Impose $U(2)_{q+\ell}$: AG, Thomsen; 2309.11547

• For the variation $U(2)_{q+e}$ or $U(2)_{q+e^c+u^c}$ see backup and Antusch, AG, Stefanek, Thomsen; 2311.09288

The UV origin of approximate $U(2)_L$

 $SM \times SU(2)_{q+l}$ gauged

AG, Thomsen; 2309.11547

• The SM-singlet scalar $\Phi \sim 2$ of flavor:

$$\langle \Phi^{\alpha} \rangle = \begin{pmatrix} 0 \\ v_{\Phi} \end{pmatrix}$$

 $\widetilde{\Phi}^{\alpha} = \varepsilon^{\alpha\beta} \Phi^*_{\beta}$

*2nd family

*Ist family

AG, Thomsen; <u>2309.11547</u>

Gauged flavor

AG, Thomsen; <u>2309.11547</u>

Gauged flavor

 $16\pi^{2}$ $b \sim a/16\pi^2$

> A single parameter! $a = v_{\Phi}/m_{\rm F}$

AG, Thomsen; <u>2309.11547</u>

Z' effects

- SSB of $SU(2)_{q+\ell}$ produced heavy, degenerate vector triplet.
- Integrating it out:

$$\mathcal{L}_{\text{SMEFT}} \supset -\frac{1}{2v_{\Phi}^{2}} \Big[\delta^{\alpha}{}_{\delta} \delta^{\gamma}{}_{\beta} - \frac{1}{2} \delta^{\alpha}{}_{\beta} \delta^{\gamma}{}_{\delta} \Big] \Big[(\bar{q}_{\alpha} \gamma^{\mu} q^{\beta}) (\bar{q}_{\gamma} \gamma^{\mu} q^{\delta}) + 2(\bar{q}_{\alpha} \gamma^{\mu} q^{\beta}) (\bar{\ell}_{\gamma} \gamma^{\mu} \ell^{\delta}) + (\bar{\ell}_{\alpha} \gamma^{\mu} \ell^{\beta}) (\bar{\ell}_{\gamma} \gamma^{\mu} \ell^{\delta}) \Big].$$
 $\alpha, \beta, \ldots \in \{1, 2\}$

- Suppressed bounds from 4-quark and 4-lepton FCNCs Darme et al; <u>2307.09595</u> $\mathsf{Eg.} \quad \mathcal{L}_{\text{LEFT}} \supset -\frac{1}{4v_{\pi}^2} A_{sd}^2 (\overline{s}_{\text{L}} \gamma_{\mu} d_{\text{L}})^2 \qquad A_{f_p f_r'} = \left[L_f^{\dagger} \operatorname{diag}(1, \, 1, \, 0) L_{f'} \right]_{pr}.$
- The strongest bounds involve 2q2l cLFV:

*complementary, can not be tuned away simultaneously

$$BR(K_L \to \mu^{\pm} e^{\mp})$$

= 5.9 \cdot 10^{-12} \left(\frac{300 \text{ TeV}}{v_{\Phi}} \right)^4 \left| A_{se} A_{\mu d} + A_{de} A_{\mu s} \right|^2.

$$\begin{aligned} \operatorname{CR}(\mu \operatorname{Au} \to e \operatorname{Au}) &= 2 \cdot 10^{-11} \cdot \left(\frac{300 \,\operatorname{TeV}}{v_{\Phi}}\right)^{4} \\ &\times \left|1.01 \,s_{2\ell} - 0.25 \,c_{2\ell}\right|^{2}. \end{aligned}$$

*Future MU2E and COMET will $v_{\Phi} \gtrsim 300 \,\text{TeV}$ improve by an order of magnitude! 27

R_u leptoquark

• Induces chirality-enhanced dipoles at one-loop:

$$C_{e\gamma}^{pr} = -\frac{1}{16\pi^2} \frac{(L_e^{3p})^* \kappa_u^3 x_{3u} \kappa_e^r}{M_{R_u}^2} \log \frac{M_{R_u}^2}{m_t^2}$$

• The strongest bounds:

$$\begin{aligned} \mu &\to e\gamma \\ |\kappa_u^3 x_{3u} \kappa_e^1| \, \frac{|L_e^{32}|}{0.1} \left(\frac{500 \,\text{TeV}}{M_{R_u}}\right)^2 \frac{\log \frac{M_{R_u}}{m_t}}{8} < 0.017 \end{aligned}$$

$$\frac{e\mathsf{EDM}}{\frac{|x_{3u}\operatorname{Im}((L_e^{31})^*\kappa_u^1\kappa_e^1)|}{10^{-3}}\left(\frac{500\operatorname{TeV}}{M_{R_u}}\right)^2\frac{\log\frac{M_{R_u}}{m_t}}{8} < 4\cdot 10^{-3}$$

 $M_{R_u}\gtrsim 500\,{
m TeV}\,$ when couplings ${\cal O}(0.3)$

PS unification

• All five scalar fields of the model fit into just two irreps!

• Explains why $M_Q = M_L$. They unify into a single VLF! $\Psi_{
m L,R} \sim ({f 4},\,{f 2},\,{f 0},\,{f 1})$

• Can one fit masses and mixings? Predictions from unification? AG, Thomsen, Tiblom; 2406.02687

PS unification

AG, Thomsen, Tiblom; 2406.02687

Field	SU(4)	${ m SU}(2)_{ m L}$	$U(1)_R$	$\mathrm{SU}(2)_{q+\ell}$
$\psi_{ m L}$	4	2	0	2
$\psi_{ m L}^3$	4	2	0	1
$\psi^p_{u,\mathrm{R}}$	4	1	1/2	1
$\psi^p_{d,\mathrm{R}}$	4	1	-1/2	1
$\Psi_{ m L,R}$	4	2	0	1
χ	4	1	1/2	1
H_1	1	2	1/2	1
$\Sigma_{ m H}$	15	2	1/2	1
Σ_{Φ}	15	1	0	2

Rank 1

Figure 3. Histogram showing the probability of obtaining the correct order of magnitude for the SM flavor parameters when the UV parameters take on random numbers drawn from a flat distribution with the magnitude ≤ 1 . The black lines display the running SM values at the renormalization scale 1 PeV. See Section 4.2 for details.

 m_b [GeV]

Phenomenology

AG, Thomsen, Tiblom; 2406.02687

 \bullet Integrating out vector leptoquark and flavored $Z^{\prime}\!s$

$$\mathcal{L}_{\text{SMEFT}} \supset -\frac{1}{v_{\chi}^2} \Big| \overline{q}^3 \gamma_{\mu} \ell^3 + \overline{q}_{\alpha} \gamma_{\mu} \ell^{\alpha} + \overline{d}^p \gamma_{\mu} e^p \Big|^2 - \frac{1}{v_{\Phi}^2} \Big| \overline{q}_{\alpha} \gamma_{\mu} t_{a\beta}^{\alpha} q^{\beta} + \overline{\ell}_{\alpha} \gamma_{\mu} t_{a\beta}^{\alpha} \ell^{\beta} \Big|^2$$

• Leading bounds from $K_L \rightarrow \mu e$ and $\mu \rightarrow e$ conversion, $v_{\chi} \gtrsim 3 \text{ PeV}$

• Mu2e and COMET will push the bounds to $v_{\gamma} \gtrsim 10$ PeV range

Conclusions

- I presented simple UV models based on a single SU(2) gauged flavor symmetries that explain the gross feature of observed flavor hierarchies.
- cLFV provides the most stringent present bounds and the most promising future probe

Thank you

https://physik.unibas.ch/en/persons/admir-greljo/ admir.greljo@unibas.ch

Impose $\mathrm{U}(2)_q$:

$$\begin{pmatrix} q_L^1 \\ q_L^2 \end{pmatrix} \sim \mathbf{2}_{+1}$$

all other singlets

- Both $\hat{\mathbf{Y}}_u$ and $\hat{\mathbf{Y}}_d$ hierarchical
- $V_{\text{CKM}} \approx \mathbf{L}_{u}^{(0)\dagger} \mathbf{L}_{d}^{(0)}$ hierarchical

Imposing $U(2)_q \implies$ $U(2)_u \times U(2)_d$ is accidental at dim-4

Impose $U(2)_q$:

$$\begin{pmatrix} q_L^1 \\ q_L^2 \end{pmatrix} \sim \mathbf{2}_{+1}$$

all other singlets

- Both $\hat{\mathbf{Y}}_u$ and $\hat{\mathbf{Y}}_d$ hierarchical
- $V_{\text{CKM}} \approx L_u^{(0)\dagger} L_d^{(0)}$ hierarchical

Imposing $U(2)_q \implies$ $U(2)_u \times U(2)_d$ is accidental at dim-4

Leptons

Impose $U(2)_e$:

$$\begin{pmatrix} e_{R}^{1} \\ e_{R}^{2} \end{pmatrix} \sim 2_{+}$$

/ \

+1 all other singlets

- Hierarchical $\hat{\mathbf{Y}}_{e}$ and $L_{l}^{(0)} \sim \mathcal{O}(1)$.
- <u>No selection rules</u> on the dim-5 Weinberg operator! PMNS ~ $\mathcal{O}(1)$

A single U(2) to rule them all? $U(2)_{q+e}$

U(2) Is Right for Leptons and Left for Quarks

Stefan Antusch (Basel U.), Admir Greljo (Basel U.), Ben A. Stefanek (King's Coll. London), Anders Eller Thomsen (Bern U. and U. Bern, AEC) (Nov 15, 2023)

Published in: Phys.Rev.Lett. 132 (2024) 15, 151802 · e-Print: 2311.09288 [hep-ph]

• Nine hierarchies in terms of two small parameters:

Phenomenology

FIG. 1. Comparative constraints on SMEFT operators from flavor and CP violation: Minimally-broken $U(2)_{q+e}$ (Blue), MFV (Green), Flavor Anarchy (Red). Here, Q = q, u, d and $L = \ell, e$. See Section 3 for details.

- SMEFT as a proxy for short-distance physics: $U(2) \Longrightarrow$ selection rules.
- A pattern of deviations emerges, distinct from MFV and anarchy.
- cLFV plays a prominent role! Exciting prospects.

Refining the picture

- What about y_b , $y_\tau \sim 10^{-2}$?
- dⁱ & eⁱ spectrum seems
 compressed compared with uⁱ.

$$\mathrm{U}(2)_{q+e^c+u^c}$$

• Up-quarks also charged under the
$$U(2)$$
:

$$Y_{u} = \begin{pmatrix} z_{u1}b^{2} & z_{u2}ab & z_{u3}b \\ y_{u1}ab & y_{u2}a^{2} & y_{u3}a \\ x_{u1}b & x_{u2}a & x_{u3} \end{pmatrix}$$

• Double **suppression** in the up-quark spectrum!

- $V_Z Z_2$ spurion
- 2HDM-II $\tan^{-1}\beta$ (SUSY?) $\langle H_u \rangle \gg \langle H_d \rangle$

We recently achieved similar texture with Z_8 FN AG, Smolkovic, Valenti; 2407.02998 (Froggatt-Nielsen ALP)

 $\mathrm{U}(2)_{q+e^c+u^c} imes \mathbb{Z}_2$

Fixing three spurions,

$(V_Z, \boldsymbol{a}, \boldsymbol{b}) = (0.01, 0.03, 0.002)$

predicts the order of magnitudes for all flavor parameters (neutrinos++). Fit of $\mathcal{O}(1)$ parameters:

 $\begin{aligned} z_{\ell 1} &= 0.14 & y_{\ell 2} = 2.0 & x_{\ell 3} = 1.0 \\ z_{u 1} &= 1.1 & y_{u 2} = 2.5 & x_{u 3} = 0.67 \quad (A9) \\ z_{d 1} &= 0.50 & y_{d 2} = 0.66 & x_{d 3} = 1.0 \\ z_{d 2} &= 2.2e^{i\alpha} & z_{d 3} = 1.8e^{i(\beta - 1.2)} & y_{d 3} = 1.3e^{i(\beta - \alpha)} \end{aligned}$

 $\mathrm{U}(2)_{q+e^c+u^c} imes \mathbb{Z}_2$

Q: Why do q, u, e feel U(2) flavor but l, d don't?

 $\begin{array}{lll} \text{A: } SU(5) \; \text{GUT}... & $\overline{\mathbf{5}} \to (\bar{\mathbf{3}}, 1)_{\frac{1}{3}} \oplus (1, 2)_{-\frac{1}{2}} & d^{c} and ℓ \\ & $\mathbf{10} \to (\mathbf{3}, 2)_{\frac{1}{6}} \oplus (\bar{\mathbf{3}}, 1)_{-\frac{2}{3}} \oplus (1, 1)_1 & q, u^{c} and e^{c} \\ & $U(2)_{10} \equiv U(2)_{q+e^c+u^c}$ \end{array}$

The UV origin of $U(2) \label{eq:UV}$

• Gauge the SU(2) part!

 $SU(2)_{q+l}$

anomaly-free

AG, Thomsen; 2309.11547

AG, Thomsen, Tiblom; <u>2406.02687</u>

*Neutrinos need an elaborate structure

 $SU(2)_{q+e}$

anomalons

Antusch, AG, Stefanek, Thomsen; <u>2311.09288</u>

 $SU(2)_{q+e^c+u^c}$ anomaly-free

wip

q

The Model

Rank 2

 \bullet

Rank I ${\color{black}\bullet}$

	Field	$SU(3)_c$	$SU(2)_L$	$\mathrm{U}(1)_{Y}$	$\mathrm{SU}(2)_{q+\ell}$		I		ſ	Field	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	$ \mathrm{SU}(2)_{q+\ell} $	
	$q_{ m L}^{lpha}$	3	2	1/6	2				ſ	$Q_{ m L,R}$	3	2	1/6	1	
	$q_{ m L}^3$	3	2	1/6	1					$L_{\rm L,R}$	1	2	-1/2	1	
	$u^p_{ m R}$	3	1	2/3	1				-						
	$d^p_{ m R}$	3	1	-1/3	1				0	. (τα . ~	$\tilde{\mathbf{r}}_{\alpha}$ = 0	. ($\sim \widetilde{T} \alpha \overline{\lambda}$	T
	$\ell^{lpha}_{ m L}$	1	2	-1/2	2				$\mathcal{L} \supset$	$+(y_q$	$\Phi^{lpha} + y_q \Phi^{lpha} + y_q \Phi^{lpha}$	$\Phi^{lpha})q_{lpha}Q$ -	$+(y_{\ell}\Phi^{\alpha})$	$+ y_{\ell} \Phi^{\alpha} \ell_{\alpha}$	L
	$\ell_{ m L}^3$	1	2	-1/2	1					$-y_u^p \overline{0}$	$\overline{Q}\widetilde{H}u^p -$	$y^p_d \overline{Q} H d^p$	$-y_e^p \overline{L}$	$He^p + H.c.$	
	$e^p_{ m R}$	1	1	-1	1				$\widetilde{}$	- <i>P</i> -		$y_f^p = (0, q)$	$y_{f2}, y_{f3}),$	$ ilde{y}_q=0,$	
	H	1	2	1/2	1				Φ^{lpha}	$= \varepsilon^{\alpha\rho} \Phi$	$\overset{*}{\beta}$ $y_{f2},$	y_{d3}, y_{e3}, y_q	$, y_{\ell}, ilde{y}_{\ell} \in \mathbb{C}$	$\mathbb{R}^+_0, \qquad y_{u3} \in$	\mathbb{C}
	Φ	1	1	0	2			Φ		Н		Φ	H	Φ	Н
$\mathcal{L} \supset \overline{-x_u^p \overline{q}^3 \widetilde{H} u^p - x_d^p \overline{q}^3 H d^p - x_e^p \overline{\ell}^3 H e^p} + ext{H.c.}$								¥, , , ,			_				, ¹¹
$\widetilde{H}^{i} = \varepsilon^{ij} H_{j}^{*} \qquad x_{f}^{p} = (0, 0, x_{f3}), \qquad x_{f3} \in \mathbb{R}_{0}^{+} \qquad \qquad \overline{q Q u} \qquad \qquad \overline{q Q d} \qquad \qquad \overline{\ell L e}$															
	$Field \\ R_u \\ R_d \\ S$	● SU(3) _c 3 3 3 3	Ran SU(2) _L 2 2 1	< 3 U(1) _Y 7/6 1/6 2/3	${f SU(2)_{q+\ell}} onumber 1 onumber 1 onumber 2 onumber 1 onumbe$		$\mathcal{L} \supset$ $V \supset$	$egin{aligned} &- z_u^p \overline{L} \ &- z_q \overline{q}_lpha \ &(\lambda_u \Phi^lpha \ & \cdot \ \end{aligned}$	$u^p \widetilde{R}_{a}$ LS^c $+ \widetilde{\lambda}_{u}$ $+$	$egin{aligned} &-z_d^p\ &-z_\ell\ &\widetilde{\Phi}^lpha)S^*_lpha\ &(\lambda_d\Phi^lpha) \end{aligned}$	$egin{aligned} &\overline{L}d^p\widetilde{R}_d \ &\overline{\ell}_lpha Q\widetilde{S}^lpha \ &R_u H^* \ &+ \widetilde{\lambda}_d \widetilde{\Phi}^lpha \end{aligned}$	$(z-z_e^p \overline{Q}) + ext{H.c.}$	$e^p R_u$, , $\tilde{T}^* + \mathrm{H.c}$	с.	
		. <u> </u>		R_d		$ \begin{array}{c} H\\ , \\ , \\ , \\ , \\ \overline{Q} e \end{array} $	48		â	$z_f^p = (z$ acciden	$z_{f1}, z_{f2}, z_{f2}, z_{\ell}, z_{f2}, z_{\ell}, z_{f2}, z_{f1}$ ntal U(1)	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{aligned} & 1, z_q, ilde{\lambda}_u,\ & l, \kappa_f^p\in \mathbb{C},\ & j ext{ global s} \end{aligned}$	$ ilde{\lambda}_d \in \mathbb{R}^+_0,$ symmetry	

Producing SM flavor parameters

The quark–Higgs coupling matrices are

$$Y_{u(d)} = \begin{pmatrix} b_q \tilde{\lambda}_{u(d)} z_{u(d)} \\ a_q y_{u(d)} + b_q \lambda_{u(d)} z_{u(d)} \\ x_{u(d)} \end{pmatrix},$$

where

$$a_q = \frac{y_q v_\Phi}{M_Q}, \qquad b_q = \frac{z_q}{16\pi^2} \frac{v_\Phi}{M_L} \left(\log \frac{M_L^2}{\mu^2} - 1\right),$$

Singular value decomposition, *perturbatively*:

$$Y_f = L_f \widehat{Y}_f R_f^{\dagger}$$

$$L_{d} \simeq \begin{pmatrix} 1 & \frac{b_{q}\tilde{\lambda}_{d}z_{d2}}{a_{q}y_{d2}} & \frac{b_{q}\tilde{\lambda}_{d}z_{d3}}{x_{d3}} \\ -\frac{b_{q}\tilde{\lambda}_{d}z_{d2}^{*}}{a_{q}y_{d2}} & 1 & \frac{a_{q}y_{d3}}{x_{d3}} \\ \frac{b_{q}\tilde{\lambda}_{d}}{x_{d3}} \begin{bmatrix} \frac{y_{d3}z_{d2}^{*}}{y_{d2}} - z_{d3}^{*} \end{bmatrix} & -\frac{a_{q}y_{d3}}{x_{d3}} & 1 \end{pmatrix}$$

• Masses:

$$\widehat{Y}_{u} \simeq \operatorname{diag}(b_{q}\widetilde{\lambda}_{u}z_{u1}, a_{q}y_{u2}, x_{u3}), \qquad \widehat{Y}_{e} \simeq \operatorname{diag}(b_{\ell}\widetilde{\lambda}_{e}z_{e1}, A_{\ell}y_{e2}, x_{e3}), \\
\widehat{Y}_{d} \simeq \operatorname{diag}(b_{q}\widetilde{\lambda}_{d}z_{d1}, a_{q}y_{d2}, x_{d3}).$$

$$V_{\rm CKM} = L_u^{\dagger} L_d \simeq \begin{pmatrix} 1 & \left[\frac{m_u z_{u2}^*}{m_c z_{u1}} - \frac{m_d z_{d2}^*}{m_b z_{d1}}\right] & \left[\frac{m_d z_{d3}}{m_b z_{d1}} - \frac{m_s m_u y_{d3} z_{u2}}{m_b m_c y_{d2} z_{u1}}\right] \\ \left[\frac{m_u z_{u2}^*}{m_c z_{u1}} - \frac{m_d z_{d2}^*}{m_s z_{d1}}\right] & 1 & \left[\frac{m_s y_{d3}}{m_b y_{d2}} - \frac{m_c y_{u3}}{m_t y_{u2}}\right] \\ \left[\frac{m_d y_{d3} z_{d2}^*}{m_b y_{d2} z_{d1}} - \frac{m_d z_{d3}^*}{m_b z_{d1}} - \frac{m_d m_c z_{d2}^* y_{u3}^*}{m_s m_t z_{d1} y_{u2}}\right] & \left[\frac{m_c y_{u3}^*}{m_t y_{u2}} - \frac{m_s y_{d3}}{m_b y_{d2}}\right] & 1 \end{pmatrix}$$

Numerical benchmark

- All marginal couplings (but two) within a factor of \sim 3 around 0.3.
- Two (accidentally) smaller parameters contributing to *Tau* and *Bottom* Yukawas ~ 0.01
- The CKM is dominated by the down-type contributions, as the hierarchy in the down quark sector is compressed compared to the up quark sector.

Phenomenology

- Decoupling limit exits: Take the new mass thresholds substantially heavy while keeping $v_{\Phi}/M_{Q,L}$ fixed and $M_{S,R_u,R_d} \lesssim M_{Q,L}$.
- The low-scale variant of the model is interesting for experiments.

• Finite Higgs naturalness provides another motivation for low-scale $M_{O,L}$

$$H \quad \cdots \quad \begin{pmatrix} Q \\ \\ u^p, d^p \end{pmatrix} \quad \cdots \quad H$$

- QI: What are the bounds on the new masses given the current data?
- Q2: Which observables and deviation patterns should be prioritized?

Discussion

Q: How to fit neutrinos?

• Add 3 RHN and do high-scale seesaw:

$$m_{\nu_{\rm L}} \simeq -M_D M_{\rm R}^{-1} M_D^{\mathsf{T}} \simeq U^{\mathsf{T}} \widehat{m}_{\nu_{\rm L}} U$$

• The model predicts hierarchical M_D . Large PMNS require M_R to also be hierarchical to "undo" the hierarchy in M_D . :(

A possible resolution comes from a mechanism to generate anarchic Y_{ν} . To this end, we can extend the field content with a single vector-like fermion representation $N_{\rm L,R} \sim (1, 1, 0, 2)$. When the mass of this field is comparable to v_{Φ} , marginal interactions $\bar{\ell}_{\alpha} \tilde{H} N^{\alpha}$ and $\overline{N}_{\alpha} \Phi^{\alpha} \nu_{p}$ wash out the hierarchy in Y_{ν} . In this case, the required Majorana mass matrix $M_{\rm R}$ is also anarchic. This is an elegant solution, provided one accepts the coincidence of scales $M_N \sim v_{\Phi}$.

• Alternative: $SU(2)_{q_L+e_R}$