Hadronic Vacuum Polarisation Contributions to Muon g - 2: Status of the Dispersive Approach

Aidan Wright

University of Liverpool

November 2024

イロト イヨト イヨト イヨト

Background

- Dispersive calculation has been used to provide the HVP input to a_μ calculation for > 20 years.
- Values stable despite BaBar-KLOE tension.
- Larger CMD-3 measurement confuses the picture.
- Goals:
 - Understand the tensions between dispersive, lattice and experiment.
 - **2** Produce an accurate and meaningful prediction for a_{μ}^{HVP}

イロト イポト イヨト イヨト

- Problem: QCD is non-perturbative at low energies so HVP of photon cannot be calculated in a loop expansion.
- Solution: dispersion integral over the $e^+e^- \rightarrow hadrons$ cross section.

• For > 40 years, low energy $e^+e^- \rightarrow hadrons$ data have been collected.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ...

- Non trivial processing required of the $e^+e^- \rightarrow hadrons$ data:
 - Bare cross section requirement necessitates knowledge of radiative corrections.
 - Consistent and precise combination procedure required.
- More than 50 channels, multiple datasets in most

A. Keshavarzi et al, The muon g - 2 and $\alpha (M_z^2)$: a new data-based analysis, Figure 7 (arXiv:1802.02995)

< ロ > < 同 > < 回 > < 回 >

- Use all information (e.g. covariance matrices) provided by experiments.
- Assume complete correlation of *all* systematics where no further information is provided.
- Dynamically cluster data within channels to prevent over-fitting.
- Iterated covariance matrix fit procedure to remove d'Agostoni bias.

$$\implies a_{\mu}^{LO \ HVP}[KNT19] = (692.79 \pm 2.42) \times 10^{-10}$$

イロト イヨト イヨト イヨト

DHMZ Fit

- Data interpolated on quadratic splines to set binning, finer on resonances.
- Uncertainties generated using pseudo-experiments.
- Correlations between datasets and channels simulated using local averaging regions.
- Use of PDG-style local χ^2 error inflation (also in KNTW) in tense bins.
- Closure test applied in 2π channel.

$$\implies a_{\mu}^{{\it LO}\,{\it HVP}}[{\it DHMZ19}] = (694.0\pm4.0) imes10^{-10}$$

A. Keshavarzi et al, The muon g-2 and α $\left(M_{Z}^{2}\right)$: a new data-based analysis, Figure 7 (arXiv:1802.02995)

M. Davier et al, A new evaluation of the hadronic vacuum polarisation contributions to the muon anomalous magnetic moment and to $\alpha (M_Z^2)$, Figure 1 (arXiv:1908.00921)

CHS 2π Fit

- The shape of the pion vector form factor is constrained by unitarity and analyticity \implies a theory motivated fit for $a_{\mu} (\pi^+ \pi^-)$.
- Some data in KLOE and BESIII cause massive tension in the fit so are removed.
- Theoretically motivated to have no zeros in pion VFF and the data are supportive.
- Leads to a result consistent with KNTW and DHMZ results depsite greatly differing method.

< ロ > < 同 > < 回 > < 回 >

Data Tensions

• Particularly on the ρ , CMD-3 2π significantly in excess of all previous data.

- A potential KLOE-CMD-3 systematic is too large for a_{μ}^{HVP} to be useable.
- Similarity at low energy used to motivate hybrid approaches...
- Belle-II see a similar excess on the 3π resonances but there are potential issues with the data.

Lattice Hybrids

- Lattice "long distance windows" typically have a large uncertainty.
- Hybrid approach: at some Euclidean time *t* switch from lattice input to dispersive input.
- BMWc-DHMZ hybrid: KLOE + BaBar + CMD-3 + τ , t_{hybrid} = 2.8 fm.
- C.T.H. Davies et al (arXiv:2410.23832v1) investigate the effect of t_{hybrid} on a_{μ}^{HVP} .
- KNT19 data as input, with KNT19(CMD-3) replacing $\pi^+\pi^-$ data with only CMD-3 data.
- CMD-3 consistent with lattice; KLOE and BaBar only above 2 fm.
- Reinforces the need to understand why CMD-3 is discrepant.

C.T.H. Davies et al, Utility of a hybrid approach to the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment, Figure 4. (arXiv:2410.23832)

・ロト ・ 同ト ・ ヨト ・ ヨト

Tau Data

"... at the required precision to match the $e^+e^$ data, the present understanding of the IB [isospin breaking] corrections to τ data is unfortunately not yet at a level allowing their use for the HVP dispersion integrals." - TI White Paper, 2020

A. Boccaletti et al, High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly, Figure 3 (arXiv:2407.10913).

- Historically data from hadronic tau decays used to supplement lacking or low accuracy cross section data.
- Poor understanding of the scale of systematic uncertainties associated with IB corrections meant these data was no longer to be included.
- More accurate calculations of IB corrections are in process, supplemented by lattice QCD and ChPT.
- DHMZ argue for the re-inclusion of τ data due to the existence of greater discrepancies among the cross section datasets.

Radiative Corrections - Additional Radiation

- BaBar study of additional radiation in $e^+e^- \rightarrow \pi^+\pi^-$ finds a possible NLO excess in PHOKHARA and a potentially significant NNLO contribution.
- Raises concerns about the KLOE and BESIII radiative correction systematics.

J.P. Lees et al, Measurement of additional radiation in the initial-state-radiation processes $e^+e^- \rightarrow \mu^+\mu^-\gamma$ and $e^+e^- \rightarrow \pi^+\pi^-\gamma$ at BABAR, Figure 3(b) (arXiv:2308.05233).

- DHMZ define two scenarios; NNLO dominated by:
 - Diagrams "(1)" and the excess in PHOKHARA is a generator issue.
 - Oiagrams "(2)" and the data deficit comes from virtual NNLO.

M. Davier et al, Tensions in $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ measurements: the new landscape of data-driven hadronic vacuum polarization predictions for the muon g – 2, Figure 6 (arXiv:2312.02053).

ヘロト 人間 と 人 ヨ と 人 ヨ と

Radiative Corrections - Experimental Impact

- This has potential consequences:
 - **(1)** KLOE08,10 over -1% on the ρ ; BESIII -3.2%.
 - **2** KLOE08 -0.8% on the ρ ; BESIII unbiased.
- KLOE investigation: strong agreement of PHOKHARA with KKMC, McMule; difference with AFKQED < 1% on the $\rho.$
- BESIII investigation: inclusive of higher order radiation and results consistent. Agreement at \sim 1% on the $\rho.$
- Both strongly disfavour DHMZ scenario 1 (hence not a full explanation).
- Both still work in progress; detector effects.

G. Venanzoni, Seventh Plenary Meeting of the Muon g - 2 Theory Initiative, September 2024

A. Denig, Seventh Plenary Meeting of the Muon g - 2 Theory Initiative, September 2024

- Already noted profound differences between combination procedures; leading to not insignificant differences between results.
- Choices to be made:
 - Rebinning of data.
 - Additional constraints.
 - Use of correlations.
 - Interpolation and integration.

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^{+}\pi^{-}\pi^{0}$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
$K^{+}K^{-}$	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without cc)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
[3.7, ∞) GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\text{DV+QCD}}$	692.8(2.4)	1.2

T. Aoyama et al, The anomalous magnetic moment of the muon in the Standard Model, Table 5 (arXiv:2006.04822)

• This analysis needs to be accurate \implies unbiased \implies blind.

э

ヘロト 人間 ト 人 ヨト 人 ヨトー

Blinding - Details

- Blinding requirements:
 - Cannot introduce biases to the data.
 - Cannot blind publicly available data.
 - Cannot infer blinding offsets from results.
 - Cannot interfere with combination and fit.

A. Keshavarzi et al, Muon g-2: blinding for data-driven hadronic vacuum polarization, arXiv:2409.02827. Accepted into PRD.

- Therefore:
 - Blind scale but blind shape only with a weakly varying kernel.
 - Blind only the outputs: integrals (X = 0) and plots (X = 1).
 - Blind integrals and plots with different kernels.

$$\sigma^{blind}_{had,(i,X)}(s) = a_i b_{(i,X)} \left(s + s_{0,(i,X)}\right)^{c_{(i,X)}} \sigma_{had,i-m}(s)$$

- At the first stage of blinding, channel numbers will be mapped by a random offset *m* (modulo 100) and different seeds generated for each channel.
- At the *relative unblinding* stage, all channel numbers will be know and the seeds will be common to all channels.

Seed	ai	$b_{(i,X)}$	<i>c</i> (<i>i</i> , <i>X</i>)	s _{0,(i,X)}	
Value	$a=\pm 1$	$0.1 \leq b \leq 0.9 \ 1.1 \leq b \leq 10$	$0.01 \leq c \leq 0.05$	$-0.01 \leq s_0 \leq 1$	
Comment	Integral only	Avoid no scaling	Avoid no distortion	Avoid knowledge at $s = 1 \text{ GeV}$	
			A = A = A A	타 수준에 수준에 문	
Aidan Wright Status of Dispersive HVP for $\sigma = 2$					

14 / 19

Blinding - Implementation

- Seeds stored in a compiled Python script and known by an external blinder (Mark Lancaster).
- Must be correctly input to produce unblinded results.

A. Keshavarzi, Seventh Plenary Meeting of the Muon g - 2 Theory Initiative, September 2024

- New cross section data could prove crucial to understanding the discrepancy in the 2π channel.
- Measurements of high multiplicity channels important to improve large uncertainties or replace estimated channels.

Experiment	Projected Precision	Current Precision	Timeline	Comments
BaBar	< 0.5%	0.5%	2025	Dataset luminosity doubled + new analysis method.
Belle-II	< 0.5%	N/A	Late 2025/26	All 427 ${ m fb}^{-1}$ of run-1 data.
BESIII	0.7%(0.5%)	0.9%	2025(28)	Also aiming to measure important 4π and $2K$ channels.
CMD-3 (> 1 GeV)	1 - 2%	N/A	Unclear	New measurement $< 1~{ m GeV}$ planned along with $n\pi$.
KLOE	0.4%	0.8% (KLOE12)	2026	-
SND	0.6 - 0.7%	0.8%	2025/26	-

• Future measurements of g - 2 (J-PARC, MUonE) will increase the precision of the experimental result.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・ ・

KNTW Updates

- Conversion of FORTRAN to Python is nearly complete:
 - Text files replaced by relational database.
 - Approaching end of conversion: new analysis can begin soon.
 - Blinding built in from the start.
- Interactive plotting software introduced for easy visualisation.
- \bullet All data inputs (\sim 280 datasets) cross checked from papers and (minor) corrections made where necessary.

(日) (四) (日) (日) (日)

KNTW Plan

- KNTW to begin a new analysis for inclusion in White Paper III (no dispersive in WPII).
- Planning to:
 - Examine and modernise the VP routine.
 - Refine FSR treatments and extend to more channels.
 - Investigate alternatives to the clustering procedure (i.e. spline interpolation).
 - Investigate the effects of varying which systematics we correlate and the correlation coefficients.
- Creation of a new interface to view, integrate and plot the data in our database.

leptons, α (M_Z^2) and the hyperfine splitting of muonium, Figure 4 (arXiv:1911.00367)

・ロト ・ 同ト ・ ヨト ・ ヨト

- Not presently at a point in our analysis where we could provide a number we think is representative of the situation.
- Dispersive method retains value, but has puzzles to solve.
- A number of outstanding questions need value before a "safe" dispersive calculation of $a_{\mu}^{LO\,HVP}$ can be provided.
- A lot depends on ongoing analyses and unpublished data.
- Of paramount importance: no jumping to conclusions about muon g 2.

・ロト ・回 ト ・ヨト ・ヨト