

Acceleration of Positive Muon and Precision Measurement of Muon Dipole Moments at J-PARC

October 2, 2024 Tsutomu Mibe (KEK)

History of accelerator technology

Experimental particle physics with muon

Anomalous magnetic moment : g-2

The most precisely calculated physical quantity to date

Breakdown of g-2 contributions

Muon g-2 theory initiative 6

An initiative formed in 2017 by a group of experts on muon g-2 theory towards the precision prediction of muon g-2

Seventh workshop at KEK (Sep 9-13, 2024)

https://conference-indico.kek.jp/event/257/

Thank you very much for many participants from Liverpool!

Standard model theory prediction is work in progress

BMWc + DHMZ, arXiv:2407.10913

See <u>review slides</u> by Martin Hoferichter in Exploring BSM physics with muons (Sep. 30, 2024)

Status of muon g-2

There will be lots of inputs to come on SM predictions.

Check out slides : https://conference-indico.kek.jp/event/257/

White paper will be updated before the FNAL final result (early 2025)

J-PARC will independently test BNL+FNAL results.

School on muon dipole moments

9

Simon Eidelman School on Muon Dipole Moments and Hadronic Effects

supported by Wilhelm and Else Heraeus Foundation

Sep 2nd-6th 2024 KMI, Nagoya University, Japan

Web = https://indico.kmi.nagoya-u.ac.jp/event/8/ contact = muonschool24_contact@hepl.phys.nagoya-u.ac.jp

Topics & Lecturer

Muon magnetic moment: Experiment Anna Driutti (Pisa)

Muon magnetic moment: Theory Martin Hoferichter (Bern)

Data input to hadronic vacuum polarization Zhiqing Zhang (IJCLab)

Lattice QCD: Hadronic vacuum polarization Aida El-Khadra (UIUC)

Lattice QCD: Light-by-light Harvey Meyer (Mainz)

Hadronic light-by-light: Phenomenology Franziska Hagelstein (Mainz)

Hadronic light-by-light: Data input Andrzej Kupsc (NCBJ/Uppsala)

New physics contributions Kei Yamamoto (Hiroshima Tech)

Detector technology Paula Collins (CERN)

Accelerator technology Mika Masuzawa (KEK)

Precision measurements Fan Xin (Northwestern)

Monte Carlo generators Yannick Ulrich (Durham)

Scientific organizers

Achim Denig (Maintz), Boris Shwartz (BINP), Gilberto Colangelo (Bern), Jim Libby (Indian Inst. Tech. Madras), Kenji Inami (Nagoya), Toru lijima (Nagoya, Chair), Tsutomu Mibe (KEK)

Local organizers

Kazuhito Suzuki (Nagoya), Kazumichi Sumi (Nagoya), Kenji Inami (Nagoya), Masato Kimura (KEK), Seiso Fukumura (Niigata), Toru lijima (Nagoya), Tsutomu Mibe (KEK), Yuki Sue (Nagoya)

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

School on muon dipole moments 10

Experimental steps

1. Prepare a polarized muon beam.

 Store in a magnetic field (muon's spin precesses)

3. Measure decay positron

muon g-2 and EDM measurements

Nomentum

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

Spin precession vector w.r.t momentum :

FNAL g-2 experiment

Science TV show cosmic front (NHK, Nov. 23, 2023

FNAL E989 experiment (2018-2023)

Completed data taking in 2023 Final results expected in 2025

89 6 5 0.00116592061(41)

B= 1.45 T

Photo courtesy of Fermilab E989

Independent test of muon g-2 : New experiment at J-PARC

Conventional muon beam

 π^+

pion

production

proton

emittance ~1000π mm •mrad

Strong focusing Muon loss BG π contamination

16

Source of systematic uncertainties

decay

 μ^+

Muon beam at J-PARC

17

J-PARC muon *g*-2/EDM experiment **18**

J-PARC MLF

- Low emittance muon beam (1/1000)
- No strong focusing (1/1000) & good injection eff. (x10)
- Compact storage ring (1/20)

The only experiment to check FNAL/BNL g-2 results

Excellent sensitivity to muon EDM about 100 times better than the previous limit (sensitivity : 1.5 E-21 ecm)

Very weak magnetic focusing

- FNAL/BNL g-2 exps use electric weak focusing (n ~0.1)
- We adopt Very weak magnetic focusing
 - Bill Morse, Yannis Semertizdis (2010)
 - Field index n = 1E-4 (1ppm/cm)
 - Vertical position of muon beam will be selfadjusted to find B_r = 0
 - \rightarrow no systematics associated with B_{radial}
 - Also very powerful to suppress the "pitch effect" on g-2 (~10 ppb).

$$B_z = B_{0z} - n\frac{B_{0z}}{R}(r-R) + n\frac{B_{0z}}{2R^2}z^2$$

Weak focusing B-field

 $B_r = -n \frac{B_{0z}}{P} z,$

Acceleration of thermal muons 20

Muon cooling

The collaboration

Tamaki Yoshioka (Kyushu)

The 28th collaboration meeting at J-PARC, June 26-28, 2024

114 members from Canada, China, Czech, Franc**22**

India, Japan, Korea, Netherlands, Russia, USA

Beam power 1MW Rep. Rate 25 Hz

Rapid Cycle Synchrotron (3 GeV)

g-2/EDM

COMET

Muonium

Neutrino exp. facility

Materials and Life science experimental Facility

MLF

LINAC

(400 MeV).

Main Ring (30 GeV)

-P

proton muon neutron neutrino kaon

Hadron exp. Hall

Demonstration of muon cooling and acceleration

Demonstration of cooling and acceleration

Muon cooling demonstration

J-PARC S2 area

26

Muon cooling demonstration

27

Experimental setup

Simulation

Experimental setup: Source & RFQ

Experimental setup: Diagnosis

RFQ acceleration cavity

Cold muon

Bending magnet

MCP

Results: time of flight

Results: beam emittance: Q-scan

Stronger Focusing (vertical)

33

 $\epsilon_x = 0.85 \pm 0.25(\text{stat})^{+0.22} - 0.13(\text{syst}) [\pi \text{ mm mrad}]$ $\epsilon_y = 0.32 \pm 0.03(\text{stat})^{+0.05} - 0.02(\text{syst}) [\pi \text{ mm mrad}]$ **Emittance reduction by ~10**-3 **The birth of low-emittance muon beam**

Next step: Acceleration to 4 MeV

Currently, the cavity is located at J-PARC LINAC.

35

Further acceleration to 210 MeV

36

Disk And Washer (DAW) (from 4 MeV to 40 MeV)

Disk Load Structure (DLS) (from 40 MeV to 210 MeV)

Start-to-end simulation

Simulated beam in the muon LINAC

Y. Takeuchi

Start-to-end simulation

Y. Takeuchi

Muon storage magnet and detector

Calculated average field uniformity

39

M. Abe et. al., NIM A 890, 51 (2018)

Positron tracking detector

Test with prototype boards

IEEE, TNS 67, 2089 (2020) JINST 15 P04027 (2020)

Intended schedule

41

Muon acceleration and future colliders 42 KEK IPNS workshop, Nov. 2, 2023 $\mu^{+} \mu^{-}$ or $\mu^{+}e^{-}$?

https://kds.kek.jp/event/48168/

R. Kitano Proton LINAC (500 MeV) RCS : 3 GeV x 6.6 µC x 2-bunch x 50 Hz = 2 MW Pion production ring: 100 nC/π/(*Δ*Ep=75[MeV](10mm)) mpression x 2-bunch x 40-turns x 50 Hz (6.6µC x 2-bunch x 75 MeV x 40-turns x 50 Hz = 2 MW) Booster ring (up to 1 TeV) Target 1 TeV x (7.2nC=>3.6nC)/µ x 40 bunch x 50Hz = 9 MW 30 GeV muon LINAC ~ 3 km lase R=1 km (B = 3 T max)16 turns ~ 700µs Triple ring (μ⁺, μ⁺, e⁻ 30 GeV muon LINAC ~ 3 km 3 km Main ring τ_{μ} = 20 ms (2000 turns) $\mu^{\star}\mu^{\star}$: 1 TeV, 2.2 nC x 1 TeV,2.2 nC x 20bunch μ^+e^- : 1 TeV, 2.2 nC x 30 GeV,10 nC x 40bunch Fig. 1. Conceptual design of the $\mu^+ e^- / \mu^+ \mu^+$ collider. Prog Theor Exp Phys (2022)

Comparison of muon beam phase space

COOlingFigure 3. Ionization Cooling path in the 6D phase space.

Ionization cooling (proposed for Muon Collider) 10⁻²

Normal muon beam

Cooling at J-PARC

Caveat: only for μ^+ (not applicable for μ^-)

Quotes

More in the cern courier article (July 5, 2024)

We are open to any possible applications of this technology in the future

This will profit the development of muon-beam technology and use.

a μ+e[–] or μ+μ+ collider!

The annihilations of the initial particles into a photon and/or a Z boson, or a Higgs boson are absent for a μ^+e^- or $\mu^+\mu^+$ collider.

International Muon Collider study leader Daniel Schulte (CERN)

John Ellis (CERN/KCL)

Ryuichiro Kitano (KEK)

Transmission muon microscope

```
45
```


Drive-thru cargo scanning

Proposal approved in JST K-program (2024-2029)

Detection of heavy materials (nuclear fuel, weapon, etc) with muon transmission image

History of accelerator technology

Summary

- A new experiment to measure muon g-2 and EDM is under preparation.
 - Cooling & acceleration of positive muon
 - Compact storage ring
- April 2024, we succeeded in the first ever demonstration of muon acceleration.
- Construction of the experiment is in progress. Expected year of data taking from 2028.
- Wide range of applications are anticipated.

Systematic uncertainties on EDM

T. Yoshioka, T. Yamanaka

Table 7: Summary of systematic uncertainties on the EDM measurement				
EDM $10^{-21} \ [e \cdot cm]$	Remarks on this experiment			
0.36	Estimate based on laser alignment monitor sys-			
	tem. Corresponds to ϕ -axis rotation of 3.6 μ rad.			
0.001	$E_z = 1 \text{ mV/cm}$ is assumed.			
0.00001	$E_z = 1 \text{ mV/cm}$ causes a shift of z position and			
	it becomes $B_r \sim 3.5 \times 10^{-10}$ T.			
0.36				
	$ \begin{array}{r} \underline{\text{mary of systematic u}} \\ $			

Comparison of g-2 experiments

Prog. Theor. Exp. Phys. 2019, 053C02 (2019)

50

	BNL-E821	Fermilab-E989	Our experiment
Muon momentum	3.09 GeV/c		300 MeV/c
Lorentz γ	29.3		3
Polarization	100%		50%
Storage field	B = 1.45 T		B = 3.0 T
Focusing field	Electric quadrupole		Very weak magnetic
Cyclotron period	149 ns		7.4 ns
Spin precession period	$4.37 \ \mu s$		$2.11 \ \mu s$
Number of detected e^+	5.0×10^{9}	1.6×10^{11}	5.7×10^{11}
Number of detected e^-	3.6×10^{9}	—	—
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb
(syst.)	280 ppb	100 ppb	<70 ppb
EDM precision (stat.)	$0.2 \times 10^{-19} e \cdot \mathrm{cm}$	—	$1.5 \times 10^{-21} e \cdot \mathrm{cm}$
(syst.)	$0.9 \times 10^{-19} e \cdot \mathrm{cm}$	—	$0.36 \times 10^{-21} \ e \cdot \mathrm{cm}$

Completed Running

In preparation

Expected uncertainties

	Estimation
Total number of muons in the storage magnet	$5.2 imes 10^{12}$
Total number of positrons	$0.57 imes 10^{12}$
Effective analyzing power	0.42
Statistical uncertainty on ω_a [ppb]	450
Statistical uncertainty on ω_p [ppb]	100
Uuncertainties on a_{μ} [ppb]	$460 \; (stat.)$
	< 70 (syst.)
Uncertainties on EDM $[10^{-21} e \cdot cm]$	$1.4 \; (stat.)$
	$0.36 \;({\rm syst.})$

Prog. Theor. Exp. Phys. 2019, 053C02 (2019)

EDM and radial magnetic field

plot from Joe Price (muEDM workshop at PSI)

 Radial magnetic field can be a major source of systematics on EDM since the g-2 term mixes to the EDM term.

52

Construction of surface muon beamline (H-line)

Prog. Theor. Exp. Phys. 2018, 113G01

First beam to H1 area (Jan 15, 2022)

57

58

Prog. Theor. Exp. Phys. 2018, 113G01

H-line extension

Extension of H-line

59

Prog. Theor. Exp. Phys. 2018, 113G01

Assembled radiation shields for extension (Oct 15, 2022)

Muon cooling

