The NA62 experiment at CERN: recent results and prospects

Evgueni Goudzovski

(University of Birmingham) goudzovs@cern.ch

Outline:

- 1) Rare kaon decays in the Standard Model and beyond
- 2) $K^+ \rightarrow \pi^+ \nu \nu$ and related measurements with NA62 Run 1 dataset
- 3) Short-term and long-term plans at CERN
- 4) KOTO experiment at J-PARC: $K_L \rightarrow \pi^0 vv$ measurement
- 5) Other recent NA62 results
- 6) Summary

Particle Physics Seminar University of Liverpool • 28 October 2020

Rare kaon decays: Standard Model and beyond

Introduction: rare kaon decays

Decay	$\Gamma_{\rm SD}/\Gamma$	Theory err.*	SM BR \times 10^{11}	Exp. $BR \times 10^{11}$
$K_L \rightarrow \mu^+ \mu^-$	10%	30%	79 ± 12 (SD)	684 ± 11
$K_L \rightarrow \pi^0 e^+ e^-$	40%	10%	3.2 ± 1.0	< 28 (@ 90% CL)
$K_L ightarrow \pi^0 \mu^+ \mu^-$	30%	15%	1.5 ± 0.3	< 38
$K^+ \to \pi^+ v \overline{v}$	90%	4%	8.4 ± 1.0	<17.8 (as of 2019)
$K_L \rightarrow \pi^0 v \overline{v}$	>99%	2%	3.4 ± 0.6	< 300

*Approx. error on LD-subtracted rate excluding parametric contributions

- FCNC processes dominated by Z-penguin and box diagrams.
- SM rates related to V_{CKM} with minimal non-parametric uncertainties.
- ✤ Golden modes K→πνν: uniquely clean theoretically.
- Decays to charged leptons: affected by larger hadronic uncertainties.

$K \rightarrow \pi \nu \nu$ in the Standard Model

SM: Z-penguin and box diagrams

"Golden modes": ultra-rare decays, precise SM predictions.

- Aaximum CKM suppression: $\sim (m_t/m_W)^2 |V_{ts}^*V_{td}|$.
- ✤ No long-distance contributions from amplitudes with intermediate photons.
- Hadronic matrix element extracted from measured $BR(K_{e3})$ via isospin rotation.

Mode	Expected BR _{SM}	Experimental status
$K^+ \rightarrow \pi^+ \nu \nu$	(8.4±1.0)×10 ⁻¹¹	BR<17.8×10 ⁻¹¹ at 90% CL (three NA62 candidates, as of 2019)
$K_L \rightarrow \pi^0 \nu \nu$	(3.4±0.6)×10 ⁻¹¹	BR<300×10 ⁻¹¹ at 90% CL (KOTO 2015 data)

BR_{SM}: Buras et al., JHEP 1511 (2015) 33; tree-level determination of CKM elements

$K \rightarrow \pi \nu \nu$ and the unitarity triangle $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})$ $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^{2.8} \cdot \left[\frac{\gamma}{73.2^\circ}\right]^{0.74}$ $\delta P_{c,u}$ |V_{cb} $P_c^{\mathrm{SD}}(X)$ $BR(K_L \to \pi^0 \nu \bar{\nu}) = (3.36 \pm 0.05) \times 10^{-11}$. 9.9% X_t other $\cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}}\right]^2 \cdot \left[\frac{|V_{cb}|}{0.0407}\right]^2 \cdot \left[\frac{\sin \gamma}{\sin 73.2^\circ}\right]^2$ 6.7 % Buras et al., JHEP 1511 (2015) 33 CKM unitarity triangle with kaons Dominant uncertainties: CKM parametric; intrinsic theory uncertainties are O(1%). excluded area has CL > 0.9 $K^+ \rightarrow \pi^+ \nu \nabla \nabla (NA62)$ 1.0 Work to decrease theory uncertainties th. uncertainty) [e.g. Christ et al., PRD 100 (2019) 114506]. Phase 2 0.5 $K \rightarrow \pi^0 \nu \overline{\nu}$ (KOTO ✤ Measurements of both K⁺ and K₁ decays: Phase 0.0 a clean $sin(2\beta)$ measurement, an independent CKM unitarity test. -0.5 Complementarity to measurements in -1.0 the **B**-sector. Over-constraining the CKM Prospective study on rare Kaons matrix: reveal the nature of new physics. -1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

E. Goudzovski / University of Liverpool, 28 Oct 2020

$K \rightarrow \pi \nu \nu$ and new physics

- ✤ Correlations between BSM contributions K⁺ and K_L BRs. [JHEP 1511 (2015) 166]
- Need to measure both K⁺ and K_L to discriminate among BSM scenarios.
- Correlations with other observables (ϵ'/ϵ , ΔM_{K} , B decays). [arXiv:2006.01138]

The NA62 experiment at CERN

Kaon programme at CERN

NA62 collaboration, JINST 12 (2017) P05025

Beamline & detector

- ♦ Currently, 1 year of operation $\approx 10^{18}$ protons on target; 4×10^{12} K⁺ decays.
- Single event sensitivities for K^+ decays: down to **BR~10**⁻¹².
- ★ Kinematic rejection factors: 1×10^{-3} for $K^+ \rightarrow \pi^+ \pi^0$, 3×10^{-4} for $K \rightarrow \mu^+ \nu$.
- ♦ Hermetic photon veto: $\pi^0 \rightarrow \gamma \gamma$ decay suppression (for $E_{\pi 0} > 40$ GeV) ~ 10⁻⁸.
- ✤ Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁸ muon suppression.

E. Goudzovski / University of Liverpool , 28 Oct 2020

NA62 status: Run 1 completed

- Commissioning run 2015: minimum bias data (~3×10¹⁰ protons/pulse).
- ✤ Physics run 2016 (30 days, ~1.3×10¹² ppp): 2×10¹¹ useful K⁺ decays.
- Physics run 2017 (160 days, ~1.9×10¹² ppp): 2×10¹² useful K⁺ decays.
- ✤ Physics run 2018 (217 days, ~2.3×10¹² ppp): 4×10¹² useful K⁺ decays.
- Run 2 start after the Long Shutdown 2 in 2021 (~3×10¹² ppp).

$K^+ \rightarrow \pi^+ vv$ measurement: NA62 Run 1 data set

Analysis of the 2016 data: PLB791 (2019) 156.

Analysis of the 2017 data: arXiv:2007.08218, accepted by JHEP.

Full Run 1 (2016–18) data set: first presented at ICHEP 2020, paper in preparation.

NA62: $K_{\pi\nu\nu}$ signal regions

Main K⁺ decay modes (>90% of BR) rejected kinematically.

Resolution on m_{miss}^2 : $\sigma = 1.0 \times 10^{-3} \text{ GeV}^4/c^2$.

Measured kinematical background suppression:

✓ K⁺→ $\pi^{+}\pi^{0}$: 1×10⁻³; ✓ K⁺→ $\mu^{+}\nu$: 3×10⁻⁴.

Further background suppression:

- PID (calorimeters & Cherenkov detectors):
 μ suppression 10⁻⁸,
 π efficiency = 64%.
- ✓ Hermetic photon veto: $\pi^{0} \rightarrow \gamma \gamma$ rejection factor = 1.4×10⁻⁸.11

Key parameters: timing, PID

Analysis principle

$$N_{\pi\nu\nu}^{exp} \approx N_{\pi\pi} \epsilon_{trigger} \epsilon_{RV} \frac{A_{\pi\nu\nu}}{A_{\pi\pi}} \frac{Br(\pi\nu\nu)}{Br(\pi\pi)} \longrightarrow \text{ S.E.S.} = \frac{Br(\pi\nu\nu)}{N_{\pi\nu\nu}^{exp}}$$

- $N_{\pi\nu\nu}^{exp}$: expected number of $K_{\pi\nu\nu}$ events
- $Br(\pi\nu\nu)$: Standard Model $K_{\pi\nu\nu}$ branching ratio (central value)
- $N_{\pi\pi}$: $K^+ \rightarrow \pi^+ \pi^0$ events selected from the **control data**, without photon + multiplicity rejection, corrected for pre-scaling
- ϵ_{RV} : "random veto" $K_{\pi\nu\nu}$ efficiency (photon + multiplicity rejection)
- $\epsilon_{trigger}$: trigger efficiency for $K_{\pi\nu\nu}$ events
- $A_{\pi\nu\nu}(A_{\pi\pi})$: acceptances from simulations (A_{$\pi\nu\nu$}=6.4% for most data)
- $Br(\pi\pi)$: PDG branching fraction of the K⁺ $\rightarrow\pi^{+}\pi^{0}$ decay

Analysis performed in bins of π^+ momentum and instantaneous beam intensity, separately for four data sets.

Single event sensitivity

Beam intensity measured event-by-event from beam tracker (GTK) time sidebands

• Expected number of SM events: $N_{\pi\nu\nu} = BR_{SM}/SES = 7.58\pm0.40_{syst}\pm0.75_{SM}\cdot14$

E. Goudzovski / University of Liverpool , 28 Oct 2020

"Conventional" backgrounds

Upstream background: type 1

Upstream background: type 2

Final collimator replacement

Old collimator

New collimator (since June 2018)

• The new collimator allows for a looser event selection: signal acceptance $A_{\pi\nu\nu}$ improved from 4.0% to 6.4%.

Background summary (2018)

Expected SM signal	$7.58(40)_{syst}(75)_{ext}$	
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	0.75(4)	
$K^+ \to \mu^+ \nu_\mu(\gamma)$ IB	0.49(5)	
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	0.50(11) (from	simulations)
$K^+ \to \pi^+ \pi^- \pi^+$	0.24(8)	
$K^+ \to \pi^+ \gamma \gamma$	< 0.01	
$K^+ \to l^+ \pi^0 \nu_l$	< 0.001	
Upstream background	3.30 ^{+0.98} -0.73	BDT-based
Total background	5.28 ^{+0.99} -0.74	

* Most background is still **not due to K**⁺ **decays in the vacuum tank**!

- Improved the beamline layout and a new upstream veto detector will be used after LS3 to suppress upstream background.
- Contributions from upstream inelastic interactions are under study.

Opening the box (2018)

Result: full Run 1 data set

- ✤ Main 2018 data set (80%): six pion momentum bins (15–45 GeV/c).
- Early 2018 data sample (old collimator), 2017 and 2016 samples: three separate categories, integrated over pion momentum.

Final result (full Run 1 sample):

 $Br(K^{+} \to \pi^{+} \nu \bar{\nu}) = (11.0^{+4.0}_{-3.5\,stat.} \pm 0.3_{syst.}) \times 10^{-11}$ (3.5 σ significance)

17

$K^+ \rightarrow \pi^+ \nu \nu$: historical perspective

Hidden-sector physics with $K^+ \rightarrow \pi^+ \nu \nu$

- Signal regions R1,R2: search for K⁺→π⁺X (X=invisible), 0 ≤ m_X ≤ 100 MeV/c² and 160 ≤ m_X ≤ 260 MeV/c².
 - ✓ Interpretation: dark scalar, ALP, QCD axion, axiflavon.
 - ✓ Main background: $K^+ \rightarrow \pi^+ \nu \nu$.
- ★ The π⁺π⁰ region: search for π⁰→invisible.
 - ✓ SM rate: **BR**(π^0 → $\nu\nu$)~10⁻²⁴.
 - \checkmark Observation = BSM physics.
 - ✓ Reduction of $\pi^0 \rightarrow \gamma \gamma$ background: optimized π^+ momentum range.
 - ✓ Extension: $K^+ \rightarrow \pi^+ X$, with m_X between R1 and R2.

Search for K⁺ $\rightarrow \pi^+X$ (2017 data)

- Two candidates in 2017 data, consistent with background: no signal.
- ↔ Upper limits of $BR(K^+ \rightarrow \pi^+X)$, depending on X mass and lifetime.
- Region 2: order of magnitude improvement on BNL E949 [PRD79 (2009) 092004]
- Not limited by background: significant improvements soon.

Search for $\pi^0 \rightarrow \text{invisible}$ (2017 data)

Short-term plans: NA62 Run 2

Long-term plans: $K^+ \rightarrow \pi^+ \nu \nu$ at CERN

- ★ The $K^+ \rightarrow \pi^+ \nu \nu$ decay in-flight technique is firmly established, and is expected to reach an O(10%) measurement by 2024.
- ★ A possible next step after LS3 (in ~2027): a K⁺→π⁺νν experiment with ×4 beam intensity (present SPS limit), aiming at ~5% precision.
 - ✓ Challenge: O(10ps) time resolution for key detectors to keep random veto under control, while maintaining other performances.

New pixel beam tracker (GTK):

time resolution: <50 ps per plane; pixel size: <300×300 μm²; efficiency: >99% per plane (incl.fill factor); material budget : 0.3–0.5% X₀; beam Intensity: 3 GHz on 30×60 mm²; peak intensity: 8.0 MHz/mm².

A current NA62 GTK station

E. Goudzovski / University of Liverpool , 28 Oct 2020

New STRAW spectrometer:

operation in vacuum; straw length/diameter: 2.2 m/5 mm; trailing time resolution: ~6 ns per straw; maximum drift time: ~80 ns; layout: ~21000 straws (4 chambers); material budget: 1.5%X₀.

Long-term plans: $K_L \rightarrow \pi^0 v v$ at CERN

- KLEVER: a high-energy experiment (10¹⁹ pot/year) complementary to KOTO.
- Photons from K_L decays boosted forward: veto coverage only up to 100 mrad.
- Vacuum tank layout and fiducial volume similar to NA62.
- ★ A possible intermediate NA62/KLEVER step: a $K_L \rightarrow \pi^0 \ell^+ \ell^-$ experiment.

SAC

CPV

PSD

Small-angle vetoes

Charged particle veto

Pre-shower detector

29

 $\delta BR(K_L \rightarrow \pi^0 \nu \nu) / BR(K_L \rightarrow \pi^0 \nu \nu) \sim 20\%$.

E. Goudzovski / University of Liverpool , 28 Oct 2020

The KOTO experiment at J-PARC

KOTO at J-PARC: $K_L \rightarrow \pi^0 \nu \nu$

- Primary beam: 30 GeV protons; 50 kW = 5.5×10¹³ p/5.2 s (in 2019).
- Neutral "pencil" beam (at 16°):
 <p(K_L)> = 2.1 GeV, with 50%
 in the (0.7–2.4) GeV range.
- Beam composition:
 K_L, neutrons, photons.
- Fiducial decay region length: 3 m.
- Csl calorimeter + hermetic photon veto.

E. Goudzovski / University of Liverpool , 28 Oct 2020

KOTO status

- 3×10^{19} POT collected.
- ◆ Final 2015 result: BR(K_L→π⁰νν)<3.0×10⁻⁹ at 90% CL. PRL 122 (2019) 021802

E. Goudzovski / University of Liverpool , 28 Oct 2020

- Reached 50 kW beam power, 4×10¹⁹ POT collected.
- Preliminary results reported in 2019/20.

<u>2019 run</u>

✤ Analysis in progress.

KOTO: 2016–18 data

Preliminary results (N.Shimizu at ICHEP 2020)

0

 $P_{T}(\pi^{0})$ vs Z_{vertex}

Single-event sensitivity: $BR_{SFS} = 71 \times 10^{-11} (= 20 \times BR_{SM})$

Nain backgrounds:				- 400 - 462 • 0.00).00	
source		#BG (90% C.L.)	#BG (68% C.L.)	$\begin{array}{c c} \pm 0.04 \\ \pm \\ K_{l} \rightarrow \pi^{0} \vee \nu \end{array}$: 0.00 / endpoint	
K+/-	$K^{\pm} \to \pi^0 \pi^{\pm}$	0.09±0.09	0.09±0.09	a 300 250 1.01 ± 0.16 (whole	blinded region)	
	$K^{\pm} \to \pi^0 e^{\pm} \nu$	0.90±0.27	0.90±0.27)	
	$K^{\pm} \rightarrow \pi^0 \mu^{\pm} \nu$	<0.21	<0.12).19	
Neutron	Upstream π^0	0.001 ± 0.001	0.001 ± 0.001		: 0.08	
	Hadron cluster	0.02 ± 0.00	0.02 ± 0.00	$\begin{cases} 100 \\ 473.5 \pm 0 \end{cases}$ $K_{L} \rightarrow 3\pi^{0}$ end	point	
	CV-pi0	<0.10	<0.05	$50 4.2 0.08 \pm 0.05 0$).00 ± 0.00	
	CV-eta	0.03 ± 0.01	0.03 ± 0.01	$\approx 1000 \ 2000 \ 3000 \ 4000 \ 5000$	6000	
Total	central value	1.05±0.28	1.05 ± 0.28	Z (π^0 decay vertex) [m]		

MeV/c]

500

450

After a blind analysis, four candidate events in the signal region.

- One event demonstrated to be background (timing in a veto counter).
- Background estimate (revised): 1.05 ± 0.28 events, mainly from K[±] decays. **
- The result on BR($K_1 \rightarrow \pi^0 vv$) is to be reported soon. **

Short-term plans: KOTO step-1

Signal: need 20 times more (flux × acceptance) to reach SM sensitivity.

- ✓ Increase the beam power ($50 \rightarrow 100 \text{ kW}$) gradually by 2024.
- ✓ 8–16 months of additional running planned in 2020-2024.

Background: need ~10 times improvement in background rejection to obtain $S/B \approx 1$, assuming SM signal rate.

 $\checkmark\,$ Continuing programme of incremental detector upgrades.

Example:

Dual side readout for CsI calorimeter modules installed at end of 2018 run

E. Goudzovski / University of Liverpool , 28 Oct 2020

Long-term plans: KOTO step-2

To reach O(100) signal events:

- proton beam power above 100 kW;
- hew neutral beamline at 5°
 with <p(K_L)> = 5.2 GeV/c;
- larger fiducial decay volume;
- complete rebuild of the detector.

Hadron hall extension required:

- a joint project with nuclear physics community;
- on the list of KEK future large-scale projects, with medium priority.

Expected sensitivity:

- ✤ signal acceptance: 5× KOTO step-1;
- ✤ 60 SM events with S/B~1 at 100 kW beam power (3×10⁷ s).

5n

Recent NA62 results beyond the flagship analysis

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$ measurement (Run 1)

NA62 Preliminary E865, K_{πee} (1999) 10300 events - statistical error only NA48/2, K_{πee} (2009) 7253 events NA48/2, $K_{\pi u u}$ (2011) 3120 events NA62, K_{$\pi\mu\mu$} (2020) – this result 28011 events -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55 Form factor parameter a_{\perp} NA62 Preliminary E865, K_{πee} (1999) 10300 events - statistical error only NA48/2, K₁₀₀ (2009) 7253 events NA48/2, K_{muu} (2011) 3120 events NA62, $K_{\pi u u}$ (2020) – this result 28011 events -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6Form factor parameter b_{i}

E. Goudzovski / University of Liverpool , 28 Oct 2020

E. Goudzovski / University of Liverpool , 28 Oct 2020

HNL production search: data sample

- ★ Triggers used: $K_{\pi\nu\nu}$ for $K^+ \rightarrow e^+N$; Control/400 for $K^+ \rightarrow \mu^+N$.
- Numbers of K⁺ decays in fiducial volume:

 $N_{K}=(3.52\pm0.02)\times10^{12}$ in positron case; $N_{K}=(4.29\pm0.02)\times10^{9}$ in muon case.

- Squared missing mass: $m_{miss}^2 = (P_K P_\ell)^2$, using STRAW and GTK trackers.
- HNL production signal: a spike above continuous missing mass spectrum.

HNL production search: results

Summary

- Rare K decays: unique new-physics probes up to O(100 TeV) mass scale.
- ✤ NA62 Run 1 in 2016–18: exposure to 6×10¹² K⁺ decays in flight.
- ★ Many new results; most importantly, first evidence for the K⁺→π⁺νν decay: 20 candidates,

 $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (11.0^{+4.0}_{-3.5stat.} \pm 0.3_{syst.}) \times 10^{-11}$ [preliminary]

- Short-term plans for $K \rightarrow \pi v v$ decays:
 - ✓ NA62 to reach O(10%) precision on BR(K⁺→ $\pi^+\nu\nu$) by 2024 with an established decay in flight technique;
 - ✓ KOTO is making significant progress in background reduction, aiming to reach SM sensitivity to $BR(K_L \rightarrow \pi^0 \nu \nu)$ by 2024.
- Next-generation kaon experiments:
 - ✓ High-intensity kaon beam facility at CERN: O(5%) precision on BR(K⁺→ $\pi^+\nu\nu$) followed by a K_L experiment;
 - ✓ KOTO step-2 at J-PARC: plans to measure $BR(K_L \rightarrow \pi^0 vv)$;
 - \checkmark detector technology: synergies with future collider & flavour experiments.