The BabaYaga@NLO event generator

F. Piccinini

Radio MonteCarLow2 Working Group Satellite Meeting

Leverhulme Trust, The Spine, Liverpool, 15 November 2024

in collaboration with the historical (since ~25 years) authors C.M. Carloni Calame, G. Montagna, O. Nicrosini plus young fellows:

G. Balossini, L. Barzè, C. Bignamini, E. Budassi, M. Ghilardi, A. Gurgone, F.P. Ucci

• E. Budassi et al., arXiv:2409.03469

BabaYaga@NLO for
$$e^+e^- \rightarrow \pi^+\pi^-$$

BabaYaga with dark photon

- C.M. Carloni Calame et al., Phys. Lett. B **798** (2019) 134976 BabaYaga@NLO EW corrections at high energies for $e^+e^- \rightarrow \gamma\gamma$
- L. Barzè et al., Eur. Phys. J. C **71** (2011) 1680
- G. Balossini et al., Phys. Lett. **663** (2008) 209 BabaYaga@NL0 for $e^+e^- \rightarrow \gamma\gamma$
- G. Balossini et al., Nucl. Phys. B758 (2006) 227
 BabaYaga@NLO for Bhabha
- C.M. Carloni Calame et al., Nucl. Phys. Proc. Suppl. **131** (2004) 48 BabaYaga for $\mu^+\mu^-$, $\gamma\gamma$, $\pi^+\pi^-$
- C.M. Carloni Calame, Phys. Lett. B 520 (2001) 16 improved PS BabaYaga
- C.M. Carloni Calame et al., Nucl. Phys. B 584 (2000) 459

- ★ In the last ~20 years BabaYaga/BabaYaga@NLO has been developed for high-precision luminometry at flavour factories
- ★ It simulates QED processes

 $\begin{array}{l} \hookrightarrow e^+e^- \to e^+e^- \ (+n\gamma) \\ \hookrightarrow e^+e^- \to \mu^+\mu^- \ (+n\gamma) \\ \hookrightarrow e^+e^- \to \gamma\gamma \ (+n\gamma) \end{array}$

with multiple-photon emission in a QED Parton Shower framework, matched with exact NLO matrix elements

* A theoretical precision at the 0.5×10^{-3} level is achieved (at least for Bhabha), with a systematic comparison to independent calculations/codes and assessing the size of missing higher-order corrections (part of the $O(\alpha^2 L)$ contributions)

- ★ In the last ~20 years BabaYaga/BabaYaga@NLO has been developed for high-precision luminometry at flavour factories
- ★ It simulates QED processes

 $\begin{array}{l} \hookrightarrow e^+e^- \to e^+e^- \ (+n\gamma) \\ \hookrightarrow e^+e^- \to \mu^+\mu^- \ (+n\gamma) \\ \hookrightarrow e^+e^- \to \gamma\gamma \ (+n\gamma) \end{array}$

with multiple-photon emission in a QED Parton Shower framework, matched with exact NLO matrix elements

- * A theoretical precision at the 0.5×10^{-3} level is achieved (at least for Bhabha), with a systematic comparison to independent calculations/codes and assessing the size of missing higher-order corrections (part of the $O(\alpha^2 L)$ contributions)
- $\star\,$ future improvements
 - * addition of pion final state

Pion pair production in e^+e^- annihilation at next-to-leading order matched to Parton Shower

Ettore Budassi,^{*a,b*} Carlo M. Carloni Calame,^{*b*} Marco Ghilardi,^{*a*} Andrea Gurgone,^{*a,b*} Guido Montagna,^{*a,b*} Mauro Moretti,^{*c,d*} Oreste Nicrosini,^{*b*} Fulvio Piccinini,^{*b*} and Francesco P. Ucci^{*a,b*}

Pion pair production in e^+e^- annihilation at next-to-leading order matched to Parton Shower

Ettore Budassi,^{*a,b*} Carlo M. Carloni Calame,^{*b*} Marco Ghilardi,^{*a*} Andrea Gurgone,^{*a,b*} Guido Montagna,^{*a,b*} Mauro Moretti,^{*c,d*} Oreste Nicrosini,^{*b*} Fulvio Piccinini,^{*b*} and Francesco P. Ucci^{*a,b*}

- NLOPS in sQED
- pion form factor in three approaches

Pion pair production in e^+e^- annihilation at next-to-leading order matched to Parton Shower

Ettore Budassi,^{*a,b*} Carlo M. Carloni Calame,^{*b*} Marco Ghilardi,^{*a*} Andrea Gurgone,^{*a,b*} Guido Montagna,^{*a,b*} Mauro Moretti,^{*c,d*} Oreste Nicrosini,^{*b*} Fulvio Piccinini,^{*b*} and Francesco P. Ucci^{*a,b*}

- NLOPS in sQED
- pion form factor in three approaches
 - F×sQED
 - GVMD
 - FsQED

Extension to di-pion final state

arXiv:2409.03469

Extension to di-pion final state

arXiv:2409.03469

- NLOPS accuracy for radiative signatures
 - $e^+e^- \rightarrow \mu^+\mu^-\gamma$
 - $e^+e^- \rightarrow e^+e^-\gamma$
 - $e^+e^- \rightarrow \pi^+\pi^-\gamma$ (with F×sQED)

- NLOPS accuracy for radiative signatures
 - $e^+e^- \rightarrow \mu^+\mu^-\gamma$
 - $e^+e^- \rightarrow e^+e^-\gamma$
 - $e^+e^- \rightarrow \pi^+\pi^-\gamma$ (with F×sQED)
- and possibly other interesting channels (e.g.: K^+K^- , $K^+K^-\gamma$)

- NLOPS accuracy for radiative signatures
 - $e^+e^- \rightarrow \mu^+\mu^-\gamma$
 - $e^+e^- \rightarrow e^+e^-\gamma$
 - $e^+e^- \rightarrow \pi^+\pi^-\gamma$ (with F×sQED)
- and possibly other interesting channels (e.g.: K^+K^- , $K^+K^-\gamma$)
- first preliminary NLO results for $e^+e^- \to \mu^+\mu^-\gamma$ and $e^+e^- \to e^+e^-\gamma$

(KLOE-I event selection of arXiv:2410.22882)

