RadioMonteCarLow 2 Working Group Meeting

A mule never stops – future plans for MCMULE –

200

er 15, 12.00

Sophie Kollatzsch for the MCMULE team

Monte Carlo for MUons and other LEptons

- integrator (generator WIP) for fixed-order QED up to NNLO
- use QCD methods: FKS^ℓ subtraction with massive fermions

- challenge virtual amplitudes with $m \neq 0 \implies$ massification (photonic)
- challenge numerical instabilities \implies next-to-soft stabilisation + **O**penLoops

Monte Carlo for MUons and other LEptons

PSI

- integrator (generator WIP) for fixed-order QED up to NNLO
- use QCD methods: FKS^ℓ subtraction with massive fermions
- challenge virtual amplitudes with $m \neq 0 \implies$ massification (photonic)

$$\mathcal{A}(m) = \left(\prod_j \sqrt{Z(m)}\right) imes \mathcal{A}(m=0) + \mathcal{O}(m) \quad \text{iff} \quad m^2 \ll \text{all other scales}$$

• challenge numerical instabilities \implies next-to-soft stabilisation + OpenLoops

Monte Carlo for MUons and other LEptons

- integrator (generator WIP) for fixed-order QED up to NNLO
- use QCD methods: FKS^{ℓ} subtraction with massive fermions
- challenge virtual amplitudes with $m \neq 0 \implies$ massification (photonic)
- challenge numerical instabilities \implies next-to-soft stabilisation + **O**penLoops

$$\underbrace{\xrightarrow{\mathcal{E}_{\gamma} \to 0}}_{\text{eikonal}} \underbrace{\frac{1}{E_{\gamma}^{2}} \mathcal{E}}_{\text{eikonal}} + \underbrace{\frac{1}{E_{\gamma}} (\mathcal{D} + \mathcal{S})}_{\text{next-to-soft}} + \mathcal{O}(E_{\gamma}^{0})$$

process $\#$	experiment	physics motivation	order
$e\mu \to e\mu$	MUonE	HVP to $(g-2)_{\mu}$	NNLO
$\ell N \to \ell N$	P2, Muse, Prad, QWeak,	proton radius and weak charge	NNLO(-)
$e\nu ightarrow e\nu$	DUNE	flux & $\sin^2 heta_W$	NNLO-
$e^-e^- \to e^-e^-$	Prad	normalisation	NNLO
	MOLLER,	$\sin^2 heta_W$ at low Q^2	
$e^+e^- \rightarrow e^+e^-$	any e^+e^- collider	luminosity measurement	NNLO
$ee ightarrow \gamma^*$			NNLO
$ee ightarrow \ell\ell$	CMD+SND, BES, KLOE,	<i>R</i> -ratio	NNLO+
	Belle	$ au$ properties & $\sin^2 heta_W$	
$ee \to \pi\pi$	CMD+SND, BES, KLOE,	R-ratio	NLO+
$ee ightarrow \gamma\gamma$	KLOE	dark searches	NNLO-
	any e^+e^- collider	luminosity measurement	
$\mu \rightarrow \nu \bar{\nu} e$	MEG, Mu3e, Pioneer, Mu2e	ALP searches	NNLO+
	DUNE	beam-line profiling	
$\mu \rightarrow \nu \bar{\nu} eee$	Mu3e	background	NLO

in McMule (currently) $2 \rightarrow 2$ @ NNLO $\supset 2 \rightarrow 2\gamma$ @ NLO

process#	experiment	physics motivation	order
$e\mu \to e\mu$	MUonE	HVP to $(g-2)_{\mu}$	NNLO
$\ell N \to \ell N$	P2, Muse, Prad, QWeak,	proton radius and weak charge	NNLO(-)
$e\nu \to e\nu$	DUNE	flux & $\sin^2 heta_W$	NNLO-
$e^-e^- \to e^-e^-$	Prad	normalisation	NNLO
	MOLLER,	$\sin^2 heta_W$ at low Q^2	
$e^+e^- ightarrow e^+e^-$	any e^+e^- collider	luminosity measurement	NNLO
$ee ightarrow \gamma^*$			NNLO
$ee ightarrow \ell\ell$	CMD+SND, BES, KLOE,	<i>R</i> -ratio	NNLO+
	Belle	$ au$ properties & $\sin^2 heta_W$	
$ee \to \pi\pi$	CMD+SND, BES, KLOE,	R-ratio	NLO+
$ee ightarrow \gamma\gamma$	KLOE	dark searches	NNLO-
	any e^+e^- collider	luminosity measurement	
$\mu \to \nu \bar{\nu} e$	MEG, Mu3e, Pioneer, Mu2e	ALP searches	NNLO+
	DUNE	beam-line profiling	
$\mu \to \nu \bar{\nu} eee$	Mu3e	background	NLO

in McMule (currently) $2 \rightarrow 2$ @ NNLO $\supset 2 \rightarrow 2\gamma$ @ NLO

process#	experiment	physics motivation	order
$e\mu \to e\mu$	MUonE	HVP to $(g-2)_{\mu}$	NNLO
$\ell N \to \ell N$	P2, Muse, Prad, QWeak,	proton radius and weak charge	NNLO(-)
$e\nu \to e\nu$	DUNE	flux & $\sin^2 heta_W$	NNLO-
$e^-e^- \to e^-e^-$	Prad	normalisation	NNLO
	MOLLER,	$\sin^2 heta_W$ at low Q^2	
$e^+e^- ightarrow e^+e^-$	any e^+e^- collider	luminosity measurement	NNLO
$ee ightarrow \gamma^*$			NNLO
$ee ightarrow \ell\ell$	CMD+SND, BES, KLOE,	R-ratio	NNLO+
	Belle	$ au$ properties & $\sin^2 heta_W$	
$ee \to \pi\pi$	CMD+SND, BES, KLOE,	R-ratio	NLO+
$ee ightarrow \gamma\gamma$	KLOE	dark searches	NNLO-
	any e^+e^- collider	luminosity measurement	
$\mu \to \nu \bar{\nu} e$	MEG, Mu3e, Pioneer, Mu2e	ALP searches	NNLO+
	DUNE	beam-line profiling	
$\mu \to \nu \bar{\nu} eee$	Mu3e	background	NLO

in McMule (currently) $2 \rightarrow 2$ @ NNLO $\supset 2 \rightarrow 2\gamma$ @ NLO

current state :: $ee \rightarrow \gamma^*$ @ NNLO $\supset ee \rightarrow \gamma\gamma^*$ @ NLO

- universal framework for arbitrary currents $X \in \{\pi, {}^{12}C, p, {}^{2}H, \dots\}$
- full mass dependence

PSI 🕼 Universität extension I: $ee \rightarrow \gamma^*$ [ISC] $ee \rightarrow XX$ current state :: $ee \rightarrow \gamma^*$ @ NNLO $\supset ee \rightarrow \gamma\gamma^*$ @ NLO • universal framework for arbitrary currents $X \in \{\pi, {}^{12}C, p, {}^{2}H, \dots\}$ • full mass dependence **next step** [~ 2025] :: $ee \rightarrow \gamma \gamma^*$ **@ NNLO** # not yet in MCMULE [Badger et al 23] + massification dispersive# & ~ OL hyperspherical# next-to-next step [~ 2026++] :: $ee \rightarrow \gamma^* @ N^3LO \supset ee \rightarrow \gamma\gamma^* @ NNLO$ [Badger et al 23] light-by-light, ... [Fael et al 22] + massification + iettification

Sophie Kollatzsch, 15.11.24 - p.5/9

a mule won't quit on the uphill – the main bottleneck for $N^{3}LO$ real-(virtual)² matrix element needs massification $\mathcal{M}_{n+1}^{(2)} \sim \frac{1}{E_{\gamma}^2} \frac{1}{(1 - \beta \cos \theta_{\gamma})}$ $\mathcal{M}_n(m) \xrightarrow{m \to 0} \mathcal{M}_n(0) \times Z \times Z$ • $(m^2 \ll \text{ all other scales})$ not valid everywhere $heta_\gamma$, • detected photon ($ee \rightarrow \gamma \gamma^*$ @ NNLO [ISC]): region excluded by cuts massification

a mule won't quit on the uphill – the main bottleneck for $N^{3}LO$

real-(virtual)² matrix element needs massification

 $\mathcal{M}_n(m) \xrightarrow{m \to 0} \mathcal{M}_n(0) \times Z \times Z$

$$\mathcal{M}_{n+1}^{(2)} \sim \frac{1}{E_{\gamma}^2} \frac{1}{(1 - \beta \cos \theta_{\gamma})}$$

- $(m^2 \ll \text{ all other scales})$ not valid everywhere
- detected photon ($ee \rightarrow \gamma \gamma^*$ @ NNLO [ISC]): region excluded by cuts
- inclusive process ($ee \rightarrow \gamma^* \ {\ensuremath{\mathbb C}}\ {\rm N}^3 {\rm LO}$): switch to expansion
- 🔹 next-to-soft 🗸
- jettification: massive J unknown at 2 loop

$$\mathcal{M}_{n+1}(m) \xrightarrow[\theta_{\gamma} \to 0]{m \to 0} \mathcal{M}_n(0) \times Z \times J$$

current state :: $ee \rightarrow \mu\mu$ @ NNLO $\supset ee \rightarrow \mu\mu\gamma$ @ NLO

• massification (m_e) for mixed, full mass dependence everything else

extension II: $ee \rightarrow \mu\mu$ [ISC+rest] current state :: $ee \rightarrow \mu\mu$ @ NNLO $\supset ee \rightarrow \mu\mu\gamma$ @ NLO • massification (m_e) for mixed, full mass dependence everything else next step [~ 2025/26] :: $ee \rightarrow \mu\mu\gamma$ @ NNLO # not yet in MCMULE dispersive# & OL OL (not ideal) hyperspherical# $\begin{array}{l} pp \rightarrow 2j + \gamma \, {\rm from} \\ [{\rm Badger \ et \ al \ } 23] \# \end{array}$ + massification ($m_e \& m_\mu$) $\mathcal{O}(10\%)$ on NNLO

extension II: $ee \rightarrow \mu\mu$ [ISC+rest] current state :: $ee \rightarrow \mu\mu$ @ NNLO $\supset ee \rightarrow \mu\mu\gamma$ @ NLO • massification (m_e) for mixed, full mass dependence everything else next step [~ 2025/26] :: $ee \rightarrow \mu\mu\gamma$ @ NNLO # not yet in MCMULE dispersive# & OL (not ideal) hyperspherical# $pp \rightarrow 2j + \gamma \text{ from} = [Badger et al 23] \# + massification (<math>m_e \& m_\mu$) $\mathcal{O}(10\%)$ on NNLO

next-to-next step [?] :: $ee \rightarrow \mu\mu$ @ N³LO $(e\mu \rightarrow e\mu)$ [see talk by Marco B.]

previously :: ISC via $ee \rightarrow \gamma^*$ @ NNLO

• below state of the art

PSI 🕼 ^{Universität}

previously :: ISC via $ee \rightarrow \gamma^*$ @ NNLO

• below state of the art

in testing $[\sim 2024]$:: $ee \rightarrow \pi\pi$ @ NLO :: [Colangelo et al 22] in dim. regularisation

• expansion for large s'(s'') implemented via EFT methods

PSI Diversität

previously :: ISC via $ee \rightarrow \gamma^*$ @ NNLO

• below state of the art

in testing $[\sim 2024]$:: $ee \rightarrow \pi\pi$ @ NLO :: [Colangelo et al 22] in dim. regularisation

• expansion for large s'(s'') implemented via EFT methods

next step [?] :: $ee \rightarrow \pi\pi\gamma$ @ NLO ... final state radiation \implies 'disperon' from OL

Desi 🕼 Universität

previously :: ISC via $ee \rightarrow \gamma^*$ @ NNLO

• below state of the art

in testing $[\sim 2024]$:: $ee \rightarrow \pi\pi$ @ NLO :: [Colangelo et al 22] in dim. regularisation

• expansion for large s'(s'') implemented via EFT methods

next step [?] :: $ee \rightarrow \pi\pi\gamma$ @ NLO ... final state radiation \implies 'disperon' from OL **next-to-next step** [?] :: $ee \rightarrow \pi\pi$ @ NLO with full Compton tensor [Hoferichter et al 19] Sophie Kollatzsch. 15.11.24 - p.7/9

yesterday

• $ee \rightarrow \pi\pi$ @ NLO :: tests

now

- $ee \rightarrow \gamma \gamma^*$ @ NNLO :: tests
- $ee \rightarrow \mu\mu\gamma$ @ NNLO :: start tests in parallel

in our mind

- MCMULE @ higher energies :: numerical instability for real-real in *ee* → *ee* @ B-like
 ⇒ collinear subtraction? [Dittmaier et al 08]
- $ee \rightarrow ee$ @ NNLO without massification [Delto et al 23]
- $ee \rightarrow \mu\mu$ @ N³LO [see talk by Marco B.]

later

- $ee \rightarrow \pi\pi(\gamma)$ @ NLO
- $ee
 ightarrow \gamma^*$ @ N $^3 {
 m LO}$

general

• . . .

- event generation
- soft resummation
- electroweak
- polarisation

MCMULE mule-tools.gitlab.io

f.I.t.r.: S.Kollatzsch (Zurich & PSI), A.Signer (Zurich & PSI), V.Sharkovska (Zurich & PSI), S.Gündogdu (Zurich & PSI), D. Moreno (PSI), A.Coutinho (IFIC), Y.Ulrich (Liverpool), D. Radic (Zurich & PSI), L.Naterop (Zurich & PSI), M.Rocco (Turin) not shown: F.Hagelstein (Mainz), N.Schalch (Oxford), T.Engel (Freiburg), A.Gurgone (Pavia), P.Banerjee (Cosenza)

Sophie Kollatzsch, 15.11.24 - p.9/9