Radiative corrections in ISR measurements

S. E. Müller

Helmholtz-Zentrum Dresden-Rossendorf

Radio MonteCarLow2 Working Group Meeting, Liverpool *November 15, 2024*

Cross section in dispersion integral should be inclusive with respect to FSR:

Cross section in dispersion integral should be inclusive with respect to FSR:

Definitions:

- Cross section $\sigma_{\pi\pi}$:
 - FSR included, vacuum polarization removed (bare or undressed)
 - → ready to plug into dispersion integral
- Pion form factor $|F_{2\pi}|^2$: FSR excluded, vacuum polarization included (*dressed*)
 - ightarrow some kind of effective coupling constant (for fitting to obtain parameters of underlying mesons)

Cross section in dispersion integral should be inclusive with respect to FSR:

Do the measurement inclusive with respect to FSR:

Cross section in dispersion integral should be inclusive with respect to FSR:

Include ISR photons at particle factories:

Cross section in dispersion integral should be inclusive with respect to FSR:

Internal photon is dressed by vacuum polarisation:

Cross section in dispersion integral should be inclusive with respect to FSR:

Measurement misses out on a fraction of FSR:

Radiative corrections: Radiator function

■ Radiator function: Crucial ingredient for ISR analyses, quite complex analytic form. Extract radiator function from PHOKHARA MonteCarlo code:

$$H(s, M_{\pi\pi}^2) = s \cdot \frac{3M_{\pi\pi}^2}{\pi\alpha^2\beta^3} \cdot \frac{\mathrm{d}\sigma_{\pi\pi\gamma(\gamma)}^{\mathrm{ISR}}}{\mathrm{d}M_{\pi\pi}^2} \bigg|_{|F_{2\pi}|^2 = 1}$$

$$\frac{\mathrm{d}\,\sigma(e^+e^-\to \mathrm{had}+\gamma)}{\mathrm{d}\,M_\mathrm{had}^2} \ = \ \frac{\sigma(e^+e^-\to \mathrm{had},M_\mathrm{had}^2)}{s}\times H(s,M_\mathrm{had}^2)$$

radiator function

Radiative corrections: Radiator function

■ Radiator function: Crucial ingredient for ISR analyses, quite complex analytic form. Extract radiator function from PHOKHARA MonteCarlo code:

$$H(s, M_{\pi\pi}^2) = s \cdot \frac{3M_{\pi\pi}^2}{\pi\alpha^2\beta^3} \cdot \frac{\mathsf{d}\sigma_{\pi\pi\gamma(\gamma)}^{\mathsf{ISR}}}{\mathsf{d}M_{\pi\pi}^2} \bigg|_{|F_{2\pi}|^2 = 1}$$

Theoretical precision due to missing terms: 0.5%

Radiative corrections: Vacuum Polarisation

■ Vacuum polarization: Cross section in dispersion integral needs to be undressed from vacuum polarization effects:

$$\sigma_0(s) = \sigma_{\rm obs}(s) \left(\frac{\alpha(0)}{\alpha(s)}\right)^2 \equiv \sigma_{\rm obs}(s)/\delta(s)$$

Final State Radiation - categories

FSR-only: Contributions in which there is only FSR, no ISR:

For these contributions, $s_{\gamma^*} = s_{ee} = M_{\phi}^2$ (in the case of KLOE08/12), and thus they are outside the s_{π} range of interest. They are proportional to the value of $|F_{\pi}(s_{ee})|^2$. Suppressed if $s_{ee} >>$ than the s_{π} range of interest.

Final State Radiation - categories

FSR-only: Contributions in which there is only FSR, no ISR:

For these contributions, $s_{\gamma^*} = s_{ee} = M_{\phi}^2$ (in the case of KLOE08/12), and thus they are outside the s_{π} range of interest. They are proportional to the value of $|F_{\pi}(s_{ee})|^2$. Suppressed if $s_{ee} >>$ than the s_{π} range of interest.

mixed FSR: Contributions in which there is both FSR and ISR:

For these contributions, $s_{\pi} \leq s_{\gamma^*}$ - this contribution should be kept, but events sit at the wrong s_{π} in the spectrum \rightarrow "Unshifting" method

Correction for shift in S_{π} due to FSR events

The presence of FSR shifts the observed value of s_{π} (evaluated from the 2 pion tracks' momenta) away from the invariant mass squared of the virtual photon s_{γ^*} :

Correction for shift in S_{π} due to FSR events

The presence of FSR shifts the observed value of s_{π} (evaluated from the 2 pion tracks' momenta) away from the invariant mass squared of the virtual photon s_{γ^*} :

Redistribute events to obtain "unshifted" distribution:

$$N_i^{s_{\gamma^*}} = \sum_{i=1}^n P(N_i^{s_{\gamma^*}} | N_j^{s_{\pi}}) \cdot N_j^{s_{\pi}}$$

 $P(N_i^{S_{\gamma^*}}|N_j^{S_{\pi}})$ obtained from MC (Phokhara_omega for events with 1γ ISR, 1γ FSR or 1γ ISR+ 1γ FSR; no interference)

Probability matrix (from KLOE Note 221 for KLOE08 analysis):

Effect of the unshifting procedure (from KLOE Note 221 for KLOE08 analysis):

Effect of the unshifting procedure (from KLOE Note 221 for KLOE08 analysis):

Then estimate correction to add back fraction of FSR from MC generator taken out by selection cuts.

Caveat: Higher order box-diagrams

PHOKHARA10 now contains the NLO contributions for $\mu\mu\gamma$ and $\pi\pi\gamma$ which include the diagrams with pentagram topology (arXiv:1312.3610):

- Factorization ansatz does not work any more for radiator function and vacuum polarisation
 - if the box-contributions are not too large, subtract from spectrum and then assume factorization still holds
- Event-by-event distinction of ISR and FSR-photons probably not possible
 - This is needed to "unshift" events with both an ISR and FSR photons
 - "PHOKHARA Omega"

Estimation of the FSR-only contribution

The contribution with only final state radiation in the data depends directly on the value of the pion form factor at the e^+e^- collision energy of the collider. CMD-3 data shows the interference wiggle around the ϕ mass:

Estimation of the FSR-only contribution

The contribution with only final state radiation in the data depends directly on the value of the pion form factor at the e^+e^- collision energy of the collider. CMD-3 data shows the interference wiggle around the ϕ mass:

Estimation of the FSR-only contribution

The contribution with only final state radiation in the data depends directly on the value of the pion form factor at the e^+e^- collision energy of the collider. CMD-3 data shows the interference wiggle around the ϕ mass:

For KLOE2010, this was checked at 1 GeV using different pion form factor parameterizations and accounted for in the systematic uncertainty of FSR (see KLOE Note 225, Sec. 4.12.1). A 5% change was found at 1 GeV, at the ϕ peak we have $\pm 10\%$, depending where the collision energy sits.

Summary

- Radiative corrections are a crucial ingredient of ISR analyses
 - Radiator function
 - Vacuum Polarization
 - Final state radiation
- FSR more relevant for tagged photon / "large angle" analyses
 - While photons from ISR are emitted preferably at small angles respect to the beams, FSR photons are more isotropically distributed
- More complete description of processes in Monte Carlo codes gives better precision
 - But may need us to get rid of "old habits"
- lacktriangle I did not discuss contribution of ϕ -meson decays like $\phi o f_o \gamma o \pi\pi\gamma$
 - Interference with FSR
 - Work done by Olga Shekhovtsova to include these channels in PHOKHARA
 - Suppressed in "small angle" analysis with untagged photons in KLOE
- I skipped Bhabha luminosity and muon normalization...

