RD50-MPW4 evaluation and joint Mighty Tracker & UT design

- <u>Chenfan Zhang</u>, Samuel Powell, Ayushi Khatri, Eva Vilella
 - Department of Physics, University of Liverpool
 - <u>chenfan@hep.ph.liv.ac.uk</u>
 - Nicola Guerrini, Seddik Benhammadi STFC Technology Department

FIAT LUX IVERPOOL 4th Mighty Tracker Workshop Liverpool, 2-4 July 2024

Sensor cross-section

- RD50-MPW4 was developed by the RD50 CMOS working group.
- Large charge collection electrode.
- Fabricated on 3 k Ω ·cm wafers and thinned to 280 μ m, using 150 nm HV-CMOS process from LFoundry.
- 1 wafer with topside biasing only, 2 wafers were back-side processed for higher breakdown voltage and hence higher radiation tolerance.
- High voltages to the top side or back side with backside processing.

Design of RD50-MPW4

- readout periphery.
 - (trigger-less);
 - digital periphery implements I2C protocol for slow control

In-pixel readout circuits

- threshold voltage variations of its comparator.
- - (8-bit);
- operating at 40MHz.

Digital periphery

- End of Column (EOC) architecture:
 - Each double column has one EOC;
 - EOC has a FIFO to store hit data (LE, TE and ADDR).
- Readout process:
 - Token mechanism to determine which EOC to read;
 - Hit data from EOC are stored in a transmission FIFO.
 - Data TX unit with LVDS port @640 Mb/s.
- Slow control:
 - Based on I2C protocol for external communication using internal Wishbone bus.
- Needs to be re-designed to meet LHCb specifications.

Results - IV

- Improve breakdown voltage with a new chip ring structure.
- High voltage applied from top side or back side:
 - Topside bias (no backside processing): ring leakage jumps to mA at ~ 200 V;
 - Backside bias (after backside processing): ring leakage jumps at ~400 V.
- The backside processed chip can still be biased to very high voltages.

6

Results - Timing performance

- Timing performance measured by Nikhef using laser.
- Clock introduces noise into pixels and worsens time resolution.
- Better time resolution (σ_{ToA}) with higher bias voltage and larger input charge.
- With $V_{th} = 50 \text{ mV}$:
 - -Time walk ≈ 10 ns
 - $-\sigma_{ToA} \approx 0.5$ ns
 - $-\sigma_{toa} \approx 2.5$ ns (small signal 1 ke⁻)

Results - Lab measurement

- Pixel noise ~ 240 e⁻.
- Trimming DAC reduces threshold dispersion over the pixel matrix.
- A low threshold voltage of 50 mV can be used.

Results - Power consumption

- Power budget of LHCb MightyPix: 150 mW/cm².
- Measure the power consumption of different power domains.
- Pixel matrix consumes ~600 mW/cm².
 - larger pixel size (considering 100 µm);
 - improve pixel design for lower power consumption.
- Digital periphery will be modified based on the LF-MightyPix chip.

Chenfan Zhang - 4th Mighty Tracker workshop - Liverpool 03/07/2024

10

Results - Testbeam

- Testbeam at DESY in April with non-irradiated samples, data analysis ongoing.
- High efficiency > 99.99% achieved.

Chenfan Zhang - 4th Mighty Tracker workshop - Liverpool 03/07/2024

• Spatial resolution $\sigma_x \approx 17.8 \ \mu\text{m}$, matches the expected value (pixel pitch 62 $\mu\text{m} / \sqrt{12} \approx 17.9 \ \mu\text{m}$).

Irradiation campaign

- samples have been neutron irradiated in Ljubljana: 1e14, 3e14, 1e15, 3e15, 1e16, $3e16 n_{eq}/cm^2$.
- IV measurements at room temperature show leakage current rise after irradiation.
- Irradiated samples can still be biased to high voltages.
- Samples are being measured in laboratory now.

- Chips in the plots are backside processed and irradiated to 1e14, 3e14, 1e15, 3e15 and 1e16 n_{eq}/cm^2 .
- Chip ring current measured at room temperature about **10** °C.
- Annealing for 80 min at 60 °C.

Irradiated samples

- Has just started testing a 3e15 n_{eq}/cm² irradiated sample (not backside processed).
- S-curve measurements show the readout electronics are functioning.
- More measurements using radioactive sources and in test beam.
- Beam test on irradiated samples at DESY in late September.

- measured at room temperature
- biased at 100 V
- 50 mV threshold voltage
- 100 injections for each voltage
- ENC ~ 850 e⁻

Chenfan Zhang - 4th Mighty Tracker workshop - Liverpool 03/07/2024

RD50-MPW4 summary

- RD50-MPW4 a successful HV-CMOS prototype.
- High breakdown voltage for high irradiation tolerance:
 - just started testing 3e15 n_{eq}/cm² sample, readout electronics still functioning;
 - more measurements on irradiated samples to be followed in lab and test beam.
- To be improved for LHCb:
 - better timing performance;
 - lower power consumption;
 - make the digital readout periphery compatible with LHCb (lpGBT protocol, meet the TFC and ECS requirements), enable daisy chain, 4 fast data links;
 - use radiation hard electronics (circular transistors, triple-redundancy digital) circuits);
 - reduce I/O pads to only one side of the chip.

New design for LHCb: RadPix

- **RadPix** (in collaboration with RAL).
- Same pixel matrix structure from RD50-MPW4.
- Lower power consumption:
 - larger pixel size (considering 100 µm);
 - improved pixel design.
- Digital periphery compatible with LHCb requirements (reuse from LF-MightyPix).
- Add voltage regulation to enable serial powering.
- Use a slow control faster than the I2C used in RD50-MPW4.
- Use a thinner chip ring to reduce dead area.

Shunt regulator design

Preliminary RadPix block diagram

pGBT receiver

