

Upgrade of the T2K near detector

TZK

Ellen Sandford

HEP seminar, University of Liverpool

29th January 2025

Introduction

In this seminar I will cover the following..

- 1. General overview of oscillation experiments, T2K and the importance of near detectors
- 2. The design, construction and installation of the upgraded near detector
- 3. A first look at data taken with the upgraded near detector and physics potential
- 4. A brief look ahead to HK era and potential further upgrades

Part One: Overview of T2K experiment and ND280

Adapted "The Growing Excitement of Neutrino Physics " by APS

- 1930: On-paper appearance as "desperate" remedy by W. Pauli \star
- 1956: Anti-ve first experimentally discovered by Reines & Cowan \star
- 1962: v_{μ} existence confirmed by Lederman *et al*
- 1986: Existence of v_{τ} was established (see Gary Feldman's talk)
- 1998: Atmospheric v oscillations discovered by Super-K \star
- 2000: v_{τ} first evidence reported by DONUT experiment
- 2001: Solar v oscillations detected by SNO (KamLAND 2002)
- ★ 2011: $v_{\mu} \rightarrow v_{\tau}$ transitions observed by OPERA
- ★ 2011-13: $v_{\mu} \rightarrow v_{e}$ observed by T2K and *anti-v_e \rightarrow anti-v_e* by Daya Bay
- \star 2015: Nobel prize for v oscillations, Breakthrough prize (2016)
- ★ 2018: T2K hints on leptonic CP violation

Taken from

S

Ca S,OI

slide

at "3

neutrinos and

beyond"

2019

Neutrino oscillation

Flavour states

- Discovery of neutrino oscillation \rightarrow neutrinos have mass
- Each neutrino flavour state (electron, muon or tau) is a superposition of different mass states
- The PNMS matrix describing neutrino mixing contains four parameters
 - Three mixing angles, θ_{12} , θ_{23} , and θ_{13}
 - The CP-violating phase, δ_{CP}
- The probability of neutrino oscillation also depends on
 - \circ Mass squared differences between the mass eigenstates (Δm_{12}^2 and Δm_{23}^2)
- Experiments detecting atmospheric, accelerator, reactor and solar neutrinos have different complimentary sensitivity to these neutrino oscillation parameters

Neutrino oscillation

δCP ≠0 or π implies CP violation in neutrino sector

Flavour states

$\left(\nu_{e}\right)$	-	/1	0	0)	(c_{13}	0	$s_{13}e^{-i\delta_{\rm CP}}$		c_{12}	s_{12}	0	$\langle \nu_1 \rangle$	Mass states
ν_{μ}	=	0	c_{23}	s ₂₃		0	1	0		$-s_{12}$	c_{12}	0	ν_2	Mass states
$\left(\nu_{\tau}\right)$		0	$-s_{23}$	c_{23}	(-	$s_{13}e^{i\delta_{\rm CP}}$	0	c_{13} /	/	0	0	1/	$\left(\nu_{3}\right)$	

		Normal Ore	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 6.1)$		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
ta	$\sin^2 \theta_{12}$	$0.308\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.345$	$0.308\substack{+0.012\\-0.011}$	$0.275 \rightarrow 0.345$	
c da	$ heta_{12}/^{\circ}$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$	$33.68^{+0.73}_{-0.70}$	$31.63 \rightarrow 35.95$	
heri	$\sin^2 \theta_{23}$	$0.470\substack{+0.017\\-0.013}$	$0.435 \rightarrow 0.585$	$0.550^{+0.012}_{-0.015}$	$0.440 \rightarrow 0.584$	
lsou	$ heta_{23}/^{\circ}$	$43.3^{+1.0}_{-0.8}$	$41.3 \rightarrow 49.9$	$47.9^{+0.7}_{-0.9}$	$41.5 \rightarrow 49.8$	
K atı	$\sin^2 heta_{13}$	$0.02215\substack{+0.00056\\-0.00058}$	$0.02030 \to 0.02388$	$0.02231\substack{+0.00056\\-0.00056}$	$0.02060 \rightarrow 0.02409$	
th SI	$\theta_{13}/^{\circ}$	$8.56_{-0.11}^{+0.11}$	$8.19 \rightarrow 8.89$	$8.59_{-0.11}^{+0.11}$	$8.25 \rightarrow 8.93$	
24 wit	$\delta_{ m CP}/^{\circ}$	212^{+26}_{-41}	$124 \rightarrow 364$	274^{+22}_{-25}	$201 \rightarrow 335$	
IC	$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.49_{-0.19}^{+0.19}$	$6.92 \rightarrow 8.05$	$7.49^{+0.19}_{-0.19}$	$6.92 \rightarrow 8.05$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.513^{+0.021}_{-0.019}$	$+2.451 \rightarrow +2.578$	$-2.484^{+0.020}_{-0.020}$	$-2.547 \rightarrow -2.421$	

Normal or inverted mass hierarchy?

Best known values of neutrino oscillation parameters

Taken from JHEP 12 (2024) 216

Long baseline experiments

Produce neutrinos of specific flavour at energy E **Travel distance L**

Long baseline experiments

Produce neutrinos

of specific flavour

at energy E

Travel distance L

where
$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$
 and we can rewrite:

$$\frac{\Delta m_{ij}^2 L}{4E} \approx 1.267 \frac{\Delta m_{ij}^2 [eV^2] \times L[km]}{E[GeV]}.$$

Detect neutrinos

4000

日

1. Beam production

 Charged pions and kaons produced which then decay inside a decay volume

water equiv. ↑ 1700 m

- This produces neutrinos or anti-neutrinos depending on whether +/- charged pions are focused with
 - magnetic horn

Super Kamiokande

Near Detector

Neutrino beam

J-PARC

as well as neutrinos from the JPARC beam, SK also detects atmospheric and solar neutrinos

3. Far detector

13

Why are our detectors "off-axis"?

- ND280 and SK detectors sit 2.5° off-axis
- This results in a neutrino beam energy distribution which is narrower, with less spread in energies
- Peak of the energy distribution also shifts with the off-axis angle, to 600 MeV peak at 2.5°
- This energy corresponds to maximum neutrino oscillation at 295 km
- This distribution also results in more CCQE like events and fewer high energy backgrounds

T2K measurements

Muon neutrino disappearance

$$P_{\mu \to x} \approx 1 - \sin^2 2\theta_{23} \cdot \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E_{\nu}} \right)$$

Electron neutrino appearance

$$P_{\mu \to e} \approx \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13} \cdot \sin^2 \left(\frac{\Delta m_{23}^2 L}{4E_{\nu}}\right)$$

- In 2012 T2K produced the first evidence of θ₁₃ ≠ 0 with a measurement of electron neutrino appearance in a muon neutrino beam
- By 2020 T2K were able to compare the electron neutrino / antineutrino appearance to provide a strong indication for CP violation in leptons

Updated oscillation analysis

- 3.6x10²¹ protons on target (POT)
- Normal ordering and upper octant favoured
- $\delta_{CP} = 0$ and π excluded at more than 90% confidence level

Recent results . Nearly maximal CP violation favoured Measured sin²(θ_{23}) consistent with reactor experiments

Eur. Phys. J. C 83, 782 (2023)

Plus recent joint analyses: T2K-SK and T2K-NOvA

Near detector

 $N_{\rm ND}^{\alpha}(\vec{x}) = \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm ND}^{\alpha}(\vec{x})$ $N_{\rm FD}^{\alpha}(\vec{x}) = P(\nu_{\alpha} \to \nu_{\alpha}) \times \Phi^{\alpha}(E_{\nu}) \times \sigma^{\alpha}(\vec{x}) \times \epsilon_{\rm FD}^{\alpha}(\vec{x})$

- The **beam flux** and **interaction model** are consistent between the near and far detector
- Carry out a near detector fit to constrain a model describing these + ND detector effects
- As such the near detector provides important measurements of
 - Electron neutrino contamination of the beam (important to ensure any electron neutrino appearance is actually due to oscillation)
 - $\circ~$ Flux and energy distribution of beam
 - $\circ~$ Neutrino interaction rates and cross sections

Pre-upgrade ND280

- The UK and Liverpool have a long history of working with ND280
- The electromagnetic calorimeter (ECal) was designed and constructed in the UK during 2007-2010
 - The barrel ECal was built between Daresbury lab and Liverpool

Systematic uncertainties

Sample		U Flux	Incertainty sou Interaction	rce (%) FD + SI + PN	Flux⊗Interaction (%)	Total (%)	
1 D //	v	2.9 (5.0)	3.1 (11.7)	2.1 (2.7)	2.2 (12.7)	3.0 (13.0)	
πμ	\overline{v}	2.8 (4.7)	3.0 (10.8)	1.9 (2.3)	3.4 (11.8)	4.0 (12.0)	
1D a	v	2.8 (4.8)	3.2 (12.6)	3.1 (3.2)	3.6 (13.5)	4.7 (13.8)	
IKe	\overline{v}	2.9 (4.7)	3.1 (11.1)	3.9 (4.2)	4.3 (12.1)	5.9 (12.7)	
1Re1de v		2.8 (4.9)	4.2 (12.1)	13.4 (13.4)	5.0 (13.1)	14.3 (18.7)	

Interaction model uncertainties are the largest source of uncertainty for the oscillation analysis \rightarrow the near detector is crucial for reducing these

Total event rate uncertainty reduction from ND fit: ~17% \rightarrow ~5%

Interaction model

- Reconstruction of the neutrino energy for QE scattering on a nucleon at rest:
- In reality there are effects from
 - Nucleons may have non-zero momenta
 - \circ Final state interactions
 - Interaction on two nucleons (2p-2h)
- Require sufficient models and uncertainties to cover any physics that could affect the oscillation analysis
- Measure interaction topologies (CC0pi, CC1pi etc) rather than interaction modes (CCQE, 2p2h, CCRES)

Example: 2p2h

- 2p2h or two-particle two-hole interactions can occur when a neutrino interactions with a pair of nucleons, due to short range correlations or meson exchange currents
- Can be simulated using Nieves et al. 2p2h model
- Require uncertainties for:
 - $_{\odot}\,$ Fraction of pn / nn pairs
 - \circ Normalisation
 - \circ Shape
 - $\circ~$ Neutrino energy dependence

Part Two: Upgrade of J-PARC beam and ND280

What do we need now?

- ND280 has been extremely successful in reducing the uncertainties due to neutrino fluxes and cross-section to ~5% level
- T2K has entered precision phase can the data collected at ND280 be improved even further?

We need to **1. Maximise statistics** AND **2. Reduce systematic uncertainties** in order to have the best chance of measuring delta_CP with precision

JPARC beam upgrade

- The J-PARC neutrino beam was recently upgraded
- Electromagnetic horns current increased from 250 kA
 → 320 kA, increasing neutrino flux
- Beam cycle decreased from 2.48s → 1.36s, increasing beam power
- Steady increase of beam power:
 - December 2023 the beam ran stably at 760kW, increased from ~500kW and surpassing for the first time the original design power of 750kW
 - June 2024: increased further to 800kW
 - Further upgrades planned to reach 1.3MW

JPARC beam upgrade

We can now collect the same POT in 4 months as we did in the whole period 2010-2022 !

What could be improved for ND280?

Limitations:

- Tracks at high angles (would like an angular acceptance more similar to SK)
- Limited timing information
- No neutron information
- Poor electron/photon separation
- High detection threshold

Reconstructed momentum and angle for muons selected at ND280 (left) and electrons selected at SK (right)

Proton reconstruction efficiency in ND280.

ND280 upgrade

In 2023/24 the POD detector was removed from ND280 and replaced with three new sub-detectors

Scintillator cube

SFGD design

- Super Fine Grained Detector (SFGD) made up of 2 million plastic scintillating cubes
- Total fiducial mass of 2 tonnes
- Each cube is 1x1x1 cm and optically isolated, with three WLS fibers going through each one
- 3D granularity
 - High angle tracks can be reconstructed
 - $\circ~$ Short low momentum tracks
- Sub-ns timing resolution
- Two prototypes built and tested in test beams at CERN

SFGD readout

1	-	Ŵ	ġ	ġ.	ġ.	Ü.			
		ġ.	ġ.	C IN COLUMN		i.		-	
		ü		MWWW		1.3		-	
ľ	Ŵ	1	â	C -H	AL STATUTO		ALL HA		
1 850		ă.	-			ä			
101-32	Ŵ	ü	Ö	in .	Ŵ	ü	1	Ť	•
No. No. No.	ų,	ü	-	ú	ö	-	Ť	1	101.001.001
No. Contraction	ü.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1-4-202	ū	ů.	Ĩ.	đ	°

PCB with 8x8 array of surface mounted MPPCs

Item	Specification
Effective photosensitive area	$1.3 \text{ mm} \ge 1.3 \text{ mm}$
Pixel pitch	$25~\mu{ m m}$
Number of pixels	2668 pixels
Fill factor	47%
Package type	Surface mount
Breakdown voltage (V_{BR})	$53 \pm 5 \text{ V}$
Peak sensitivity wavelength	450 nm
Photo detection efficiency	25%
Gain	$7.0 \ge 10^5$
Dark count	70 kcps (typ.)
Crosstalk probability	1%

- Three WLS fibres through each SFGD cube requires 56k readout channels
- Single ended readout of Hamamatsu Multi-Pixel Photon Counters (MPPC)
 - High dynamic range from 3.5 to 2000 PE

(i) Support system assembly

(iv) Stop panels removed

(ii) First cube layer assembly

(v) Box closure

(iii) All 56 layers assembled

(vi) Transfer to new support

(vii) Horizontal fibers assembly

(viii) Wall MPPCs assembly

(ix) Vertical fibers assembly

(x) Top MPPCs assembly

(xi) LED calib. modules assembly (xii) Light barrier/cables assembly

25

Detector performance with cosmics

High angle TPCs

- Two new time projection chamber detectors
 - $_{\odot}\,$ Dimensions 2.0 \times 0.8 \times 1.8 m
 - o Gaseous mix, 95% Ar
 - $_{\odot}$ 275 V/cm electric field
 - Two Cu field cages joined by a central cathode producing a 90 cm drift distance
- Similar to the present ND280 TPCs, they provide high granularity 3D track reconstruction, charge and momentum measurement and PID
- Instead of downstream, these are above and below SFGD, providing information about charged particles emitted at high angles

Major changes to design: novel readout technology and new field cage design to minimise dead space + position of TPCs designed for high angle tracks

Resistive Micromegas readout

- Novel technology Encapsulated Resistive Anode Micromegas (ERAM)
- Additional resistive layer spreads charge over several readout pads on anode plane
- Results in a much better point resolution
- Resistive layer additionally prevents sparks, allowing higher gain to be used and simplified front end electronics

Signals read out by 8 Micromegas organised in a 4x2 readout plane

Inner cage surfaces polishing

Checking grooves for o-ring and for charge labyrinth on cathode flanges

Measuring strip-strip and strip-shield insulation at high voltage ND280 after lowering of top HATPC 2024.4.25

Lowering bottom HATPC 2023.9.8

HATPC performance

Time of flight (ToF) detectors

- Six time of flight modules surround the SFGD and HATPC volume
- Each plane is 2.3 by 2.5 m2 and is made up of 20
 1cm thick scintillator bars with high light output, stable attenuation length and fast timing
- Scintillation light propagates through the bars and is read out by double ended SiPM readout

ToF modules during commissioning at CERN

ToF timing performance

Timing resolution of 150 ps is achieved

Beam structure clearly captured by ToF

Part Three: First data with ND280 upgrade!

Building ND280 upgrade

First data taking

- Technical runs taken in Nov/Dec 23 and Feb 24 with SFGD, bottom HAT and first TOF panels
- Installation of all sub-detectors completed with final two ToF panels in May 2024
- First physics run with completed upgrade in June 2024

Event display

Lower momentum threshold

- SFGD has reduced momentum threshold for pions and protons
- Proton threshold reduced to approx 300 MeV
- Additionally, a higher efficiency over the whole momentum range

Better angular acceptance

 4π acceptance for tracks due to HATPC detectors

Neutron detection

Time of flight between neutrino vertex and secondary vertex can be used to reconstruct neutrons in the SFGD

detection

- This is especially important for anti-neutrino • channels, where the reconstruction of the neutron will massively increase resolution of reconstructing the neutrino energy
- Approx 50% tagging efficiency expected

Phys.Rev.D 101 (2020) 9, 092003

Better PID

- Photons from $\pi 0$ production are a dominant background to electron neutrino selections in ND280
- SFGD high granularity has much improved electron/gamma identification

• Excellent proton /MIP separation

Interesting events

Candidate event with very **high angle muon** and forward going proton (would be hard to measure pre-upgrade)

Candidate event with **neutron** emitted from neutrino vertex

Run number : 16120 | SubRun number : 0 | Event number : 12772 | Spill : 12345 | Time : Sun 2023-12-24 17:28:50 JST | Partition : 61 | Trigger: Beam Spill

Part Four: Future plans for ND280?

T2K will continue to run until 2027

Timeline

- Beam power to continue to increase up to 1.3 MW
- Plan to collect 10x10^21 POT, for a 3 sigma measurement of δ_{CP}

Hyper-Kamiokande

- Next generation water Cherenkov detector currently under construction, with fiducial volume approximately 8 time larger than Super-K
- Liverpool strongly involved in the calibration system for HK and in particular the light injection system
- Expected to take data from 2027 onwards
- Will use ND280 as the near detector

Hyper-Kamiokande is currently under construction

Overview of the Hyper-K constructions

ND280++?

- Proposal to carry out additional upgrades to ND280 for the HK era
- This would primarily involve the "tracker" part of the detector which was not upgraded in the last few years
- Goal of high granularity and large mass of hydrogen/water
- R&D ongoing to develop new technology
 - $\circ~$ "hyper"-FGD (larger volume of SFGD)
 - Water based liquid scintillator in segmented cubes
 - $_{\odot}~$ Scintillating fibres

ND280 ECal refurb

- The Electromagnetic Calorimeter part of ND280 is made up of scintillator bars with wavelength shifting fiber running through them – the light collected travels along the fiber to MPPC sensors
- Over time, the scintillator bars have aged, reducing the light yield
- Not currently a problem for physics, however ageing will continue during HK era
- Large increase in light yield could be achieved by replacing the MPPCs to newer sensors, due to improvements in tech since 2009
- This refurb could massively lower the threshold for detecting eg. low energy gammas exiting the detector
- Studies ongoing at Liverpool to understand the requirements and possible benefits of this refurb

Conclusions

- The near detector suite, including ND280, are a crucial part of the T2K long baseline neutrino oscillation experiment
- An upgrade of ND280 was completed in 2024
 - $\circ~$ Three new subdetectors
 - Improvements including neutron detection, better angular acceptance and low energy thresholds
 - Huge amount of work into designing, building, installing and commissioning these detectors
- First data has been taken with the upgrade and analyses are underway
- Targeting summer conferences to show first event selections with data
- Starting to look ahead to further upgrades for the HK era

Thank you for listening