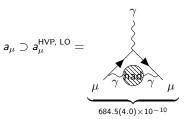
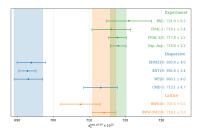

KNTW Re-Analysis of the HVP Contributions to Muon g-2

Aidan Wright

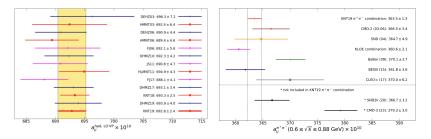



Aidan Wright KNTW Re-Analysis of the HVP Contributions to Muon g - 2 1

< ロ > < 回 > < 回 > < 回 > < 回 >

- The anomalous magnetic moment of the muon is half of the deviation from the Dirac case *g* = 2.
- Divided by type of loop Hadronic Vacuum Polarisation contributions require special methods to calculate.
- Two choices of method:
 - Dispersive: Relate the vacuum polarisation tensor in the derived expression for a_μ to experimental cross sections.
 - Lattice QCD: Perform QCD calculations on discretised grid to allow for use of perturbation theory.
- Theory methods in tension with one another; dispersive in tension with experiment.

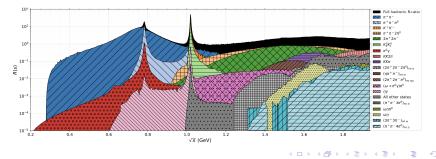
This talk: the KNTW dispersive approach.



• • • • • • • • • • • •

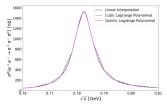
The Dispersive Approach

- Cross sections from e⁺e⁻ → hadrons data can be radiatively corrected, combined channel by channel and then numerically integrated.
- ullet Originally the only available method results stable for \sim 20 years.
- Result from CMD-3 $\pi^+\pi^-$ measurement in significant tension with preceding results...

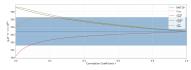

 Now we face an unclear, difficult three way tension: dispersive-dispersive, dispersive-lattice and dispersive-experimental.

イロト イヨト イヨト

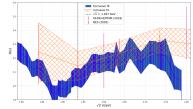
PhD Year 1


Overall aim: a new KNTW analysis, taking thorough account of all possible sources of uncertainty, producing a dispersive a_{μ}^{HVP} value to be confident of.

- The 2019 KNT analysis ran in a \sim 20 year-old FORTRAN code accessing experimental data stored in text files.
- My task: (1) update this into a modern Python code accessing a database; (2) check the data stored against \sim 200 papers.
 - All relevant functionality of the FORTRAN converted into or accessible from the FORTRAN.
 - All papers checked, all (minor) differences recorded.
- Status: able to replicate the KNT19 analysis...


Analysis Improvements

Lagrange Interpolation


Additional Systematics

- KNTW clustering procedure has a limited number of unfixed parameters.
- Variation \implies systematic uncertainty.
- Orrelation Strength Effects

All of this + more + new data!

Exclusive-Inclusive Transition

Ochannel Correlations

- Data from the same experiment is typically correlated across channels.
- Estimate ⇒ systematic uncertainty.
- Can be accounted for better in a potential future "global fit".

O Spline Interpolation

- KNT19 used a clustering procedure within channels.
- Can potentially be replaced by an average of dataset splines.

Blinding

- Ahead of introducing new data or making significant analysis changes, need to make sure we are not biased.
- Tense situation \implies we need to objectively determine the best methods.
- Therefore blind integrals and plots with a kernel

$$B_i(s) = a_i \cdot b_i \cdot (s + s_{0,i})^{c_i}$$

where $a_i, b_i, c_i, s_{0,i}$ and the channel number *i* are random numbers from externally held seeds.

Summary:

- The dispersive method is a way to calculate a^{HVP}_µ which presents interesting difficulties, technically and w.r.t. the current physics landscape.
- My work so far has primarily consisted of converting to Python and cross-checking the KNT19 g 2 analysis code and input data.
- The full KNTW re-analysis with new data will include thorough considerations of potential sources of error and investigation of the optimal methods so as to produce the best possible prediction.

< ロ > < 同 > < 回 > < 回 >