

Probing new physics with rare B decays at Belle II

Gaetano de Marino

University of Liverpool - 2025.01.22

HEP Seminars

Flavour → species of Standard Model fermions
Flavour physics → investigates the properties of quarks & leptons

^{10.23730/}CYRSP-2019-006.181

Quark flavour physics \rightarrow <u>SM parameters</u>

couplings, CKM params., masses Symmetries C, P, CP, CPT, flavour, CPV sources QCD dynamics, spectroscopy

Flavour physics allows to probe well above the electroweak scale Flavour observables can provide constraints on New Physics

- High resolution (momentum, vertex) hermetic detectors
- Efficient reconstruction of neutrals (γ, π^0, η)
- Clean environment and low background
- World luminosity records

0

- High resolution (momentum, vertex) hermetic detectors
- Efficient reconstruction of neutrals (γ, π^0, η)
- Clean environment and low background
- World luminosity records

WR Luminosity of 2.1×10³⁴ cm⁻² s⁻¹ (Currents 1.2/1.6 A) (June 2009)

 $\beta_{\rm y}^* = 6\,{\rm mm}$

$$\mathscr{L} = \frac{\gamma_{\pm}}{2\mathrm{er}_{\mathrm{e}}} \left(1 + \frac{\sigma_{\mathrm{y}}^{*}}{\sigma_{\mathrm{x}}^{*}}\right) \left(\frac{\mathrm{I}_{\pm} \xi_{\mathrm{y}\pm}}{\beta_{\mathrm{y}}^{*}}\right) \left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\xi_{\mathrm{y}\pm}}}\right)$$

WR Luminosity of 4.7×10³⁴ cm⁻² s⁻¹ (Currents 1.1/1.5 A) (June 2022)

$$\beta_{y}^{*} = 1 \text{ mm}$$

- High resolution (momentum, vertex) hermetic detectors
- Efficient reconstruction of neutrals (γ, π^0, η)
- Clean environment and low background
- World luminosity records

WR Luminosity of 5.1×10³⁴ cm⁻² s⁻¹ (Currents 1.3/1.7 A) (Dec 2024)

• Belle II control room, start of Run2

<section-header>

LS1 goals

- Detector upgrade
 PXD, TOP, backend readout COPPER→PCIe40
- **Background mitigation** Shields, non-linear collimator
- Protection of machine and Belle II collimator heads, abort systems
- Improvement of beam injection

	Process	$\sigma(e^+e^- \to X) \text{ [nb]}$	
Products of e ⁺ e ⁻ colli	$\sigma[\Upsilon(4S)]$	1.11	
		$\sigma[u\bar{u}(\gamma)]$	1.61
• Low multiplicity	Bhabha+QED, μ + μ -, τ + τ -	$\sigma[d\bar{d}(\gamma)]$	0.40
		$\sigma[s\bar{s}(\gamma)]$	0.38
		$\sigma[c\bar{c}(\gamma)]$	1.30
		$\sigma[\tau^+\tau^-(\gamma)]$	0.919
Continuum	$u\bar{u}, d\bar{d}, s\bar{s}, c\bar{c}$	$\sigma[e^+e^-(\gamma)]$	300
		$\sigma[\gamma\gamma(\gamma)]$	4.99
		$\sigma[\mu^+\mu^-(\gamma)]$	1.148
 Y(4S) → BB 	$B^+B^-, B^0\overline{B}{}^0$	$\sigma[e^+e^-e^+e^-]$	39.7
		$\sigma[e^+e^-\mu^+\mu^-]$	18.9
		$\sigma[\nu\bar{\nu}(\gamma)]$	0.00025

>50 publications (see here)

b-quark

- heaviest fermion forming bound states
- lighter than the *t*-quark \Rightarrow decays to quarks of other generations

b-hadrons

- Thousands of decay modes $M(B) - M(D) \sim 3 \text{ GeV}$

B-factories (like Belle II) have a rich program related to B-mesons

Decays with large branching ratio → Precision measurement of SM observables

Flavour changing charged currents FCCC b \rightarrow c They occur at tree level in the SM

$\int_{W^{CD}} \frac{\overline{b}}{\overline{d}} = \frac{\overline{c}}{\overline{d}} = \frac$

b-quark

- heaviest fermion forming bound states
- lighter than the *t*-quark \Rightarrow decays to quarks of other generations

b-hadrons

- Thousands of decay modes $M(B) - M(D) \sim 3 \text{ GeV}$

B-factories (like Belle II) have a rich program related to B-mesons

- Decays with large branching ratio → Precision measurement of SM observables
- Decays with low/zero branching ratio → Searches for rare/forbidden decays

n decays $\mathscr{B} < 5 \times 10^{-5}$

 $\mathscr{B} \sim \mathcal{O}(10^{-3} - 10^{-2})$

b-quark

- heaviest fermion forming bound states
- lighter than the *t*-quark \Rightarrow decays to quarks of other generations

b-hadrons

- Thousands of decay modes $M(B) - M(D) \sim 3 \text{ GeV}$

B-factories (like Belle II) have a rich program related to B-mesons

- Decays with large branching ratio → Precision measurement of SM observables
- Decays with low/zero branching ratio → Searches for rare/forbidden decays

Alterations/enhancements in FCNC due to NP contributions:

4,180 1,270 -1/3 2/3 1/2 1/2

Rare decays: more sensitive to NP and less limited by collision energy *but*

- harder to interpret compared to a bump

SM operators

 $P_{L/R} = \frac{1}{2}(1 \mp \gamma_5)$

$$\begin{aligned} \text{Dipole operator} \qquad & \mathcal{O}_{7}^{ij} = \frac{e \, m_{d_j}}{(4\pi)^2} (\bar{d}_i \, \sigma_{\mu\nu} \, P_R \, d_j) \, F^{\mu\nu} \\ \text{SL operators} \qquad & \mathcal{O}_{9}^{ij;\ell\ell'} = \frac{e^2}{(4\pi)^2} (\bar{d}_i \, \gamma^{\mu} \, P_L \, d_j) (\bar{\ell} \, \gamma_{\mu} \, \ell') \quad & \mathcal{O}_{10}^{ij;\ell\ell'} = \frac{e^2}{(4\pi)^2} (\bar{d}_i \, \gamma^{\mu} \, P_L d_j) (\bar{\ell} \, \gamma_{\mu} \, \gamma_5 \, \ell') \\ \text{(pseudo)scalar operator} \qquad & \mathcal{O}_{P}^{ij;\ell\ell'} = \frac{e^2}{(4\pi)^2} (\bar{d}_i \, P_R \, d_j) (\bar{\ell} \, \gamma_5 \, \ell') \qquad & \mathcal{O}_{S}^{ij;\ell\ell'} = \frac{e^2}{(4\pi)^2} (\bar{d}_i \, P_R \, d_j) (\bar{\ell} \, \gamma_5 \, \ell') \end{aligned}$$

Rare decays: more sensitive to NP and less limited by collision energy *but*

- harder to interpret compared to a bump

Rare decays: more sensitive to NP and less limited by collision energy *but*

- harder to interpret compared to a bump
- predictions for SM observables must be well-known

Theoretical uncertainties arise from

- WC and constants (e.g. V_{CKM})
 → small uncertainties
- Local hadronic ME
 - \rightarrow Moderate uncertainties (3-15%)
- Non-local hadronic ME
 - \rightarrow Large uncertainties

Use ratios for (partial) cancellation of uncertainties — both theoretical and experimental

 $|\lambda_{t}| = |V_{tb}V_{ts}^{*}| = |V_{cb}|(1 + \mathcal{O}(\lambda^{2}))$

 $\langle \mathsf{H} | \mathcal{O}_{7,9,10} | \mathsf{B} \rangle$ $\mathcal{O}_{7,9,10} = (\bar{\mathsf{s}}\Gamma \mathsf{b})$

$$i \int d^4 x e^{iq \cdot x} \left\langle \mathsf{K}^{(*)} \, | \, \mathsf{T} \{ \mathsf{j}^{\mathsf{em}}_{\mu}(\mathsf{x}) \mathcal{O}^{\mathsf{c}}_{1,2}(\mathsf{0}) \} \, | \, \mathsf{B} \right\rangle \mathcal{O}_{1,2} = (\bar{\mathsf{s}} \Gamma \mathsf{b})(\bar{\mathsf{c}} \Gamma \mathsf{c})$$

$\mathscr{B}(B\toK\mu\mu)$	$\mathscr{B}(\bar{b} \to \bar{f}) - \mathscr{B}(b \to f)$		
$\mathscr{B}(B \to Kee)$	$\mathcal{B}(\bar{b} \to \bar{f}) + \mathcal{B}(b \to f)$		

• Threshold \overline{BB} production \rightarrow Relatively low backgrounds

- Known initial kinematics + almost- 4π detector coverage \rightarrow reconstruct final states with neutrinos
- OFF-resonance data \rightarrow BB-free sample

• Energy difference ΔE and beam-constrained mass M_{bc} and as discriminative variables against combinatorial and peaking backgrounds

Many decay modes to measure/search for at *B*-flavour experiments

- LHCb Better with muons/charged particles that can be vertexed
- Belle II Better with e, γ and ν

$B \rightarrow VISIBLE$

- Radiative B-decays
- $b \rightarrow (s, d) \ell \ell$ decays

Exclusive measurements

Study specific dynamics of hadronisation
 Explore photon properties/asymmetries that could reveal NP effects

X Predictions suffer from large theoretical uncertainties (form factors estimation)

Observables

Ο

...

- Exclusive BF b→(s/d) γ
- CP, isospin asymmetry
- \circ Photon up-down asymmetry

$$\mathscr{A}_{\mathsf{CP}} = \frac{\Gamma(\bar{\mathsf{B}} \to \bar{\mathsf{V}}\gamma) - \Gamma(\mathsf{B} \to \mathsf{V}\gamma)}{\Gamma(\bar{\mathsf{B}} \to \bar{\mathsf{V}}\gamma) + \Gamma(\mathsf{B} \to \mathsf{V}\gamma)}$$

$$\mathcal{A}_{\mathrm{I}} = \frac{\Gamma(\mathsf{B}^{0} \to \mathsf{V}^{0}\gamma) - \Gamma(\mathsf{B}^{+} \to \mathsf{V}^{+}\gamma)}{\Gamma(\mathsf{B}^{0} \to \mathsf{V}^{0}\gamma) + \Gamma(\mathsf{B}^{+} \to \mathsf{V}^{+}\gamma)}$$

B

 B_{sig}

Inclusive measurements

Test the SM predictions for the total $b \rightarrow s\gamma$ branching fraction and probe the underlying quark-level process with minimal hadronic uncertainties

Experimentally more challenging but only possible in the clean environment of B factories

For $E_{\gamma} > 1.6$ GeV: BF_{HFLAV} = (3.49 ± 0.19) × 10⁻⁴ BF_{th} = (3.40 ± 0.17) × 10⁻⁴ JHEP06(2020)175

Exclusive measurements

Study specific dynamics of hadronisation
 Explore photon properties/asymmetries that could reveal NP effects

imes Predictions suffer from large theoretical uncertainties (form factors estimation)

Observables

 \bigcirc

...

- Exclusive BF b→(s/d) γ
- <u>CP, isospin asymmetry</u>
- Photon up-down asymmetry
- B $\rightarrow \rho \gamma$: Belle+Belle II (Preliminary) <u>2407.08984</u> Most precise measurement!

-0.25

1.8

2.0

 $B \rightarrow K^* \gamma$: Belle II (Preliminary) <u>2411.10127</u> Need more data!

Inclusive measurements

Test the SM predictions for the total $b \rightarrow s\gamma$ branching fraction and probe the underlying quark-level process with minimal hadronic uncertainties

Experimentally more challenging but **only possible in the clean environment of B factories**

2.2

 E_v^B [GeV]

2.4

2.6

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $b \rightarrow (s, d) \ell \ell$

In the b \rightarrow (s, d) $\ell \ell$ sector, Belle II can:

• Provide unique insight for

Inclusive $\mathscr{B}(B \to X_s \ell \ell)$ - 10% accuracy @ 5 ab⁻¹ expected <u>1808.10567</u>

Be redundant with LHCb for

LFU test $R_{\kappa^{(*)}}$

Independent measurement of $R_{K^{(*)}}$ at Belle II with 5-10 ab⁻¹ 3% precision at 50 ab⁻¹

$$C_7^{(\prime)}$$
 constraints $\rightarrow B \rightarrow K^*ee$ (low q²)

Search for rarer $b \rightarrow d\ell \ell \ell$ decays

PRD 108 (2023) 032002 PRL 131 (2023) 051803

 R_K low- q^2 R_K central- q^2 R_{K^*} low- q^2 R_{K^*} central- q^2

Precisely predicted to be ~1 in the SM - unc $\mathcal{O}(1\%)$

10 Integrated Luminosity (ab⁻¹)

EPJC 76, 440 (2016)

JHEP12(2020)104 JHEP10(2022)146

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $b \rightarrow (s, d) \ell \ell$

In the $b\!\rightarrow\!(s,d)\ell\ell$ sector, Belle II can:

• Provide **unique insight** for

Inclusive $\mathscr{B}(B \to X_s \ell \ell)$ - 10% accuracy @ 5 ab⁻¹ expected <u>1808.10567</u>

Be redundant with LHCb for

LFU test $R_{K^{(*)}}$

Independent measurement of $R_{K^{(\ast)}}$ at Belle II with 5-10 $ab^{\text{-}1}$ 3% precision at 50 $ab^{\text{-}1}$

 $C_7^{(\prime)}$ constraints $\rightarrow B \rightarrow K^*ee$ (low q²) Belle, <u>PRD 110 (2024) 7, 072005</u>

Search for rarer $b \mathop{\rightarrow} d \ell \ell \ell$ decays

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $b \rightarrow (s, d) \ell \ell$

In the b \rightarrow (s, d) $\ell \ell$ sector, Belle II can:

- Provide unique insight for Inclusive $\mathscr{B}(B \to X_s \ell \ell)$ - 10% accuracy @ 5 ab⁻¹ expected
- Be redundant with LHCb for

LFU test $R_{K^{(*)}}$

Independent measurement of $R_{K^{(*)}}$ at Belle II with 5-10 ab⁻¹

3% precision at 50 ab⁻¹

$$C_7^{(\prime)}$$
 constraints $\rightarrow B \rightarrow K^*$ ee (low q²)

Search for rarer $b \rightarrow d\ell\ell$ decays

Obtained \mathcal{O}^{UL} in the range (2.9)

Belle, PRL 133, 101804 (2024)

Channel	UL or BR	Collaboration
$B^0 o \eta$ ee	$< 10.8 imes 10^{-8}$	BaBar
$B^0 o \eta \mu \mu$	$< 11.2 imes 10^{-8}$	BaBar
$B^0 o \pi^0 ee$	$< 8.4 imes 10^{-8}$	BaBar
$B^0 o \pi^0 \mu \mu$	$< 6.9 imes 10^{-8}$	BaBar
$B^+ ightarrow \pi^+ ee$	$< 8.0 imes 10^{-8}$	Belle
$B^+ o \pi^+ \mu \mu$	$(1.78\pm0.22\pm0.03) imes10^{-8}$	LHCb
$B^0 o ho^0 \mu \mu$	$(1.98\pm0.53) imes10^{-8}$	LHCb

90% CL upper limits

				I		
$(47) \times 10^{-7}$	channel	$N_{ m sig}$	$N_{ m sig}^{ m UL}$	ε (%)	$\mathcal{B}^{\mathrm{UL}}$ (10^{-8})	${\cal B}~(10^{-8})$
	$egin{aligned} B^0 & o \eta e^+ e^- \ B^0 & o \eta \mu^+ \mu^- \ B^0 & o \eta \ell^+ \ell^- \end{aligned}$	$\begin{array}{c} 0.0^{+1.4}_{-1.0} \\ 0.8^{+1.5}_{-1.1} \\ 0.5^{+1.0}_{-0.8} \end{array}$	$3.1 \\ 4.2 \\ 1.8$	$3.9 \\ 5.9 \\ 4.9$	< 10.5 < 9.4 < 4.8	$\begin{array}{c} 0.0^{+4.9}_{-3.4}\pm 0.1\\ 1.9^{+3.4}_{-2.5}\pm 0.2\\ 1.3^{+2.8}_{-2.2}\pm 0.1\end{array}$
	$egin{array}{lll} B^0 ightarrow \omega e^+ e^- \ B^0 ightarrow \omega \mu^+ \mu^- \ B^0 ightarrow \omega \ell^+ \ell^- \end{array}$	$\begin{array}{c}-0.3\substack{+3.2\\-2.5}\\1.7\substack{+2.3\\-1.6\\1.0\substack{+1.8\\-1.3\end{array}}\end{array}$	$3.7 \\ 5.5 \\ 3.6$	$1.6 \\ 2.9 \\ 2.2$	< 30.7 < 24.9 < 22.0	$\begin{array}{c} -\ 2.1^{+26.5}_{-20.8} \pm 0.2 \\ 7.7^{+10.8}_{-7.5} \pm 0.6 \\ 6.4^{+10.7}_{-7.8} \pm 0.5 \end{array}$
vith	$\begin{array}{c} B^0 \rightarrow \pi^0 e^+ e^- \\ B^0 \rightarrow \pi^0 \mu^+ \mu^- \\ B^0 \rightarrow \pi^0 \ell^+ \ell^- \end{array}$	$\begin{array}{c}-2.9^{+1.8}_{-1.4}\\-0.5^{+3.6}_{-2.7}\\-1.8^{+1.6}_{-1.1}\end{array}$	$4.0 \\ 6.1 \\ 2.9$	$6.7 \\ 13.7 \\ 10.2$	$< 7.9 \\ < 5.9 \\ < 3.8$	$\begin{array}{c} - \ 5.8^{+3.6}_{-2.8} \pm 0.5 \\ - \ 0.4^{+3.5}_{-2.6} \pm 0.1 \\ - \ 2.3^{+2.1}_{-1.5} \pm 0.2 \end{array}$
	$B^+ \to \pi^+ e^+ e^-$	$0.1^{+2.5}_{-1.6}$	5.0	11.5	< 5.4	$0.1^{+2.7}_{-1.8}\pm 0.1$
	$B^0 o ho^0 e^+ e^-$	$5.6^{+3.5}_{-2.7}$	10.8	3.2	< 45.5	$23.6^{+14.6}_{-11.2}\pm1.1$
	$\begin{array}{c} B^+ \rightarrow \rho^+ e^+ e^- \\ B^+ \rightarrow \rho^+ \mu^+ \mu^- \\ B^+ \rightarrow \rho^+ \ell^+ \ell^- \end{array}$	$\begin{array}{c}-4.4\substack{+2.3\\-2.0}\\3.0\substack{+4.0\\-3.0}\\0.4\substack{+2.3\\-1.8}\end{array}$	$5.3 \\ 8.7 \\ 3.0$	$1.4 \\ 2.9 \\ 2.0$	< 46.7 < 38.1 < 18.9	$\begin{array}{c} -38.2^{+24.5}_{-17.2}\pm3.4\\ 13.0^{+17.5}_{-13.3}\pm1.1\\ 2.5^{+14.6}_{-11.8}\pm0.2 \end{array}$

Unigilieu 30	In the range $(3.6 - 47) \times 10$
First search	
$B^0 \rightarrow \omega \ell^+ \ell^-$	
$B^0 \rightarrow \rho^0 e^+ e^-$	
$B^{\pm} \to \rho^{\pm} \ell^+ \ell^-$	-

 $\pi^+/\rho^0 ee$ stat limited but consistent with $\pi^+/\rho^0 \mu\mu$ from LHCb

No sign of LFUV

Approaching SM!

$B \rightarrow VISIBLE + MISSING ENERGY$

- B-tagging strategies
- $B^+ \rightarrow K^+ \nu \bar{\nu}$ observation
- $B \rightarrow K \tau \tau$ searches
- LFV in B

B-tagging used forBackground filteringPartial kinematic info

- Maximise sensitivity for decays with specific signatures (e.g. single track)
- The directional information from the B_{tag}, despite the poor experimental resolution, is used to boost the μ^{\pm} into the signal B_{sig} rest-frame

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 B-TAGGING FOR MISSING-ENERGY MODES

- Flavour info

 $\mathbf{E}_{\mathbf{ECL}} \rightarrow$ Sum of the energy deposits in the calorimeter that cannot be associated with the reconstructed daughters of the \mathbf{B}_{tag} or the \mathbf{B}_{sig}

Signal events $\rightarrow E_{ECL} \sim 0$

Background events → Additional neutral clusters from unreconstructed particles

- Full kinematic info

130, 181803 (2023)

The two B's are produced back-to-back in the CM frame \leftrightarrow the reconstruction of the $\mathsf{B}_{\mathsf{tag}}$ allows to know the 3-momentum of the B_{tag} on an event-by-event basis with excellent resolution

$$M_{\text{recoil}} = \left[m_{\text{B}}^2 + m_{\text{K}\ell}^2 - 2(E_{\text{beam}}^* E_{\text{K}\ell}^* + |\vec{p}_{\text{B}_{\text{tag}}}^*||\vec{p}_{\text{K}\ell}^*|\cos\theta) \right]^{1/2}$$

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $B^+ \rightarrow K^+ \nu \bar{\nu} SEARCH WITH BELLE II$

Two tagging approaches leading to almost statistically independent samples

Inclusive Tag

- Leading the final sensitivity
- Two classifiers pre-filter (BDT₁) + BDT₂
- Fit to $q_{rec}^2 \times \eta(BDT_2)$ (ON+OFF data)

- Less sensitive, used for consistency check
- Single classifier BDT_h
- Fit to $\eta(BDT_h)$ for ON resonance data

 \mathbf{K}_{sig}^{+} : reconstructed applying kaon-enriching selection $\mathbf{q}_{rec}^{2} = s/(4c^{4}) + M_{K}^{2} - \sqrt{s}E_{K}^{*}/c$

BDT_{2,h}: uses information of signal kaon, ROE and event topology

PRD 109, 112006 (2024)

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $\blacksquare \to K^+ \nu \bar{\nu} COMBINATION$

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 **WHAT FOLLOWS** B⁺ \rightarrow K⁺ $\nu \bar{\nu}$

Lepton flavour universality does not intersect with Belle II data below the excluded region from Belle

Important to corroborate the 2023 result

- More data (ITA: stat~syst, with some syst being statistical in nature)
- Additional b \rightarrow s $\nu \bar{\nu}$ channels (NP can couple differently to K, K*)
- Additional tagging approaches (uncertainty SL~ITA)

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 **MOTIVATION FOR** $b \rightarrow s \tau \tau$ **SEARCHES**

- Correlation with $R_{D^{(*)}}$ [2] \rightarrow Large enhancements to SM BF $\mathcal{O}(10^2 10^3)$ [3]
- Recent $B^+ \rightarrow K^+ \nu \bar{\nu}$ excess, combined with R_{K^*} constraints, suggest LFUV in τ 's [4,5]

B

h

Unique opportunity for Belle II

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $B \rightarrow K^{*0} \tau \tau$ AT BELLE (II)

- Hadronic B-tagging Belle <u>neurobayes-based algorithm</u>
- Cut-based analysis
- $\tau \rightarrow \ell \nu \bar{\nu}, \pi \nu$ combined template fit in E_{ECL}
- $\mathscr{B}(B^0 \to K^{*0} \tau \tau) < 3.1 \times 10^{-3} (90 \% \text{ CL})$

 $(\pi, \rho,$

- Hadronic B-tagging Belle II <u>BDT-based algorithm</u> \times 2 eff.
- Multivariate analysis

 $\pi \pi \pi \rho X$

• Simultaneous fit for $\ell\ell$, $\ell\pi$, $\pi\pi$, ρX in BDT output $\mathscr{B}(\tau \to \rho\nu) \sim 25\%$

Y(4S)-

365 fb⁻¹

• $\mathscr{B}(\mathsf{B}^0 \to \mathsf{K}^{*0}\tau\tau) < 1.8 \times 10^{-3} (90 \% \, \mathrm{CL})$

 $\times 10^{-3}$ at 90% C.L. Better UL with less data!

- Lepton Flavour Violating (LFV) decays can occur in the SM via ν mixing but are highly suppressed (m_{ν}²/m_W²) well beyond any experimental sensitivity
- Extensions to the SM explaining the B-anomalies can connect the LFUV to the LFV

<u>PRL 114, 091801 (2015)</u>

• Enhanced decay rates in, for example, $b \rightarrow s\tau \ell$ transitions

 $\mathscr{B}(\mathsf{B} \to \mathsf{K}\mu\tau) \in [2,3] \times 10^{-6}$

PLB 848, 138411 (2023)

• The specific NP models that can lead to LFV must obey the constraints from other flavour observables $B_{(c)}/W \rightarrow \tau \nu, B^0 - \overline{B}^0, \tau \rightarrow \mu \gamma(\phi) \dots$

[<u>1602.00881</u>, <u>1606.00524</u>, <u>1611.06676</u>, <u>1806.05689</u>, <u>2103.16558</u>, <u>2206.09717</u>, …]

The observation of LFV in the charged sector would be a clear sign of physics beyond the Standard Model!

- Searches of b \rightarrow se μ decays are dominated by LHCb and UL's are $\mathcal{O}(10^{-8} 10^{-9})$
- + $b \rightarrow s\tau \ell$ are the most searched for, given the connection with the B-anomalies
 - UL are $\mathcal{O}(10^{-5})$ and Belle(II) and LHCb have similar sensitivities
- B-factories perform better with $b \rightarrow (s, d)\tau e$ modes

THE CHALLENGES

- Modelling of $b \rightarrow c \bar{u} d$
- Modelling of (signal-like) backgrounds
- Neutrals reconstruction

FEI is the algorithm for HAD B_{tag} reconstruction at Belle II [1]

- Mostly $B \rightarrow D^{(*)}m\pi^{\pm}n\pi^{0}$
- ~2x higher efficiency wrt previous algorithms [2]
- Employs BDTs trained on MC $\Upsilon(4S) \rightarrow B\bar{B}$ events
- $\mathscr{P}_{\mathsf{FEI}}$ used to select best $\mathsf{B}_{\mathsf{tag}}$

Main challenges

- **1.** Large data/MC efficiency discrepancies
 - \rightarrow Improve the modelling of B-decays

- 2. Hadronic B-tagging: pure but very low efficiency
 - \rightarrow Add more decay modes
 - → New algorithms: Graph Neural Network FEI <u>ACAT2022</u>

Poor knowledge of hadronic $B \rightarrow Dn\pi$ decays \Rightarrow Poor MC

 \Rightarrow Poor hadronic B-tagging

 \Rightarrow Limits our reach to exciting physics \cong

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $B \rightarrow D^{(*)}h$ **DECAYS**

- 'Simplest' decays: two-body with $W^{*-} \rightarrow \pi^+ / \rho^+ / a_1^+$
- Rates can be obtained by a product of 2 currents (factorisation):
 - $B \rightarrow D$
 - $-\mathsf{W}^*\!\to\!\mathsf{X}$
- The corrections to this model due to perturbative QCD effects grow at higher $q^2 \equiv m_X^2$

Discrepancies between measurements and expectations

[PRD 106 (2022) 3, 033006 (Table), JHEP 09 (2016) 112]

 $B \rightarrow D\pi$ (Belle) [<u>PRD 105 (2022) 1, 012003</u> (1), <u>PRD 105 (2022) 7, 072007</u> (15, 19)]

 $B^+ \to \overline{D}{}^0 \rho^+$ (Belle II) <u>PRD 109, 11103 (2024)</u> - $\mathscr{B}_{\text{Belle II}}$ = (0.939 ± 0.021 ± 0.05) %

- FEI calibration factor $0.75 \rightarrow 1.07$

	Process	Diagram	\mathcal{B}_{CCQM}/E	\mathcal{B}_{PDG}/E	Е
1	$B^0 \rightarrow D^- + \pi^+$	D_1	5.34 ± 1.07	$2.52 \!\pm\! 0.13$	10^{-3}
2	$B^0 \rightarrow \pi^- + D^+$	D_1	11.19 ± 2.24	7.4 ± 1.3	10^{-7}
3	$B^0 \rightarrow \pi^- + D_s^+$	D_1	3.48 ± 0.70	$2.16 \!\pm\! 0.26$	10^{-5}
4	$B^+ \rightarrow \pi^0 + D_s^+$	D_1	1.88 ± 0.38	$1.6\!\pm\!0.5$	10^{-5}
5	$B^0 \rightarrow D^- + \rho^+$	D_1	14.06 ± 2.81	7.6 ± 1.2	10^{-3}
6	$B^0 \rightarrow \pi^- + D_s^{*+}$	D_1	3.66 ± 0.73	2.1 ± 0.4	10^{-5}
7	$B^+ \rightarrow \pi^0 + D^{*+}$	D_1	0.804 ± 0.16	<3.6	10^{-6}
8	$B^+ \rightarrow \pi^0 + D_s^{*+}$	D_1	0.197 ± 0.04	<2.6	10^{-4}
9	$B^0 \rightarrow D^{*-} + \pi^+$	D_1	4.74 ± 0.95	2.74 ± 0.13	10^{-3}
10	$B^0 \rightarrow \rho^- + D_s^+$	D_1	$2.76 \!\pm\! 0.55$	<2.4	10^{-5}
11	$B^+ \rightarrow \rho^0 + D_s^+$	D_1	0.149 ± 0.03	<3.0	10^{-4}
12	$B^0 \rightarrow D^{*-} + \rho^+$	D_1	14.58 ± 2.92	$6.8\!\pm\!0.9$	10^{-3}
13	$B^0 \rightarrow \rho^- + D_s^{*+}$	D_1	5.09 ± 1.02	4.1 ± 1.3	10^{-5}
14	$B^+ \rightarrow \rho^0 + D_s^{*+}$	D_1	0.275 ± 0.06	<4.0	10^{-4}
15	$B^0 \rightarrow \pi^0 + \bar{D}^0$	D_2	0.085 ± 0.02	2.63 ± 0.14	10 ⁻⁴
16	$B^0 \rightarrow \pi^0 + \bar{D}^{*0}$	D_2	1.13 ± 0.23	2.2 ± 0.6	10^{-4}
17	$B^0 \rightarrow \rho^0 + \bar{D}^0$	D_2	0.675 ± 0.14	$3.21 \!\pm\! 0.21$	10^{-4}
18	$B^0 \rightarrow \rho^0 + \bar{D}^{*0}$	D_2	1.50 ± 0.30	<5.1	10^{-4}
19	$B^+ \!\rightarrow \! \bar{D}^0 \!+\! \pi^+$	D_3	3.89 ± 0.78	4.68 ± 0.13	10^{-3}
20	$B^+ \rightarrow \bar{D}^0 + \rho^+$	D_3	1.83 ± 0.37	1.34 ± 0.18	10^{-2}
21	$B^+ \rightarrow \bar{D}^{*0} + \pi^+$	D_3	7.60 ± 1.52	4.9 ± 0.17	10^{-3}
22	$B^+ \rightarrow \bar{D}^{*0} + \rho^+$	D_3	11.75 ± 2.35	9.8 ± 1.7	10^{-3}

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $B \rightarrow D^{(*)}h$ **DECAYS**

- 'Simplest' decays: two-body with $W^{*-} \rightarrow \pi^+ / \rho^+ / a_1^+$
- Rates can be obtained by a product of 2 currents (factorisation):
 - $B \rightarrow D$
 - $-\mathsf{W}^*\!\rightarrow\!\mathsf{X}$
- The corrections to this model due to perturbative QCD effects grow at higher $q^2 \equiv m_X^2$

Discrepancies between measurements and expectations

[PRD 106 (2022) 3, 033006 (Table), JHEP 09 (2016) 112]

Failure of the factorisation?

NP contributions? [JHEP 10 (2021) 235, PRD 102.071701 (2020)]

Things get even more complicated for $n\pi$, n > 2 ... <u>Need more measurements!</u>

	Process	Diagram	\mathcal{B}_{CCQM}/E	\mathcal{B}_{PDG}/E	Е
1	$B^0 \rightarrow D^- + \pi^+$	D_1	5.34 ± 1.07	2.52 ± 0.13	10-3
2	$B^0 \rightarrow \pi^- + D^+$	D_1	11.19 ± 2.24	7.4 ± 1.3	10^{-7}
3	$B^0 \rightarrow \pi^- + D_s^+$	D_1	3.48 ± 0.70	$2.16 \!\pm\! 0.26$	10^{-5}
4	$B^+ \rightarrow \pi^0 + D_s^+$	D_1	1.88 ± 0.38	$1.6\!\pm\!0.5$	10^{-5}
5	$B^0 \rightarrow D^- + \rho^+$	D_1	14.06 ± 2.81	7.6 ± 1.2	10^{-3}
6	$B^0 \rightarrow \pi^- + D_s^{*+}$	D_1	3.66 ± 0.73	2.1 ± 0.4	10^{-5}
7	$B^+ \rightarrow \pi^0 + D^{*+}$	D_1	0.804 ± 0.16	<3.6	10^{-6}
8	$B^+ \rightarrow \pi^0 + D_s^{*+}$	D_1	0.197 ± 0.04	<2.6	10^{-4}
9	$B^0 \rightarrow D^{*-} + \pi^+$	D_1	4.74 ± 0.95	2.74 ± 0.13	10^{-3}
10	$B^0 \rightarrow \rho^- + D_s^+$	D_1	$2.76 \!\pm\! 0.55$	<2.4	10^{-5}
11	$B^+ \rightarrow \rho^0 + D_s^+$	D_1	0.149 ± 0.03	<3.0	10^{-4}
12	$B^0 \rightarrow D^{*-} + \rho^+$	D_1	14.58 ± 2.92	$6.8\!\pm\!0.9$	10^{-3}
13	$B^0 \rightarrow \rho^- + D_s^{*+}$	D_1	5.09 ± 1.02	4.1 ± 1.3	10^{-5}
14	$B^+ \rightarrow \rho^0 + D_s^{*+}$	D_1	0.275 ± 0.06	<4.0	10^{-4}
15	$B^0 \rightarrow \pi^0 + \bar{D}^0$	D_2	0.085 ± 0.02	2.63 ± 0.14	10^{-4}
16	$B^0 \rightarrow \pi^0 + \bar{D}^{*0}$	D_2	1.13 ± 0.23	2.2 ± 0.6	10^{-4}
17	$B^0 \rightarrow \rho^0 + \bar{D}^0$	D_2	0.675 ± 0.14	3.21 ± 0.21	10^{-4}
18	$B^0 \rightarrow \rho^0 + \bar{D}^{*0}$	D_2	1.50 ± 0.30	<5.1	10^{-4}
19	$B^+ \!\rightarrow \! \bar{D}^0 \!+\! \pi^+$	D_3	3.89 ± 0.78	4.68 ± 0.13	10^{-3}
20	$B^+ \rightarrow \bar{D}^0 + \rho^+$	D_3	1.83 ± 0.37	$1.34 \!\pm\! 0.18$	10^{-2}
21	$B^+ \!\rightarrow\! \bar{D}^{*0} + \pi^+$	D_3	7.60 ± 1.52	4.9 ± 0.17	10^{-3}
22	$B^+ \rightarrow \bar{D}^{*0} + \rho^+$	D_3	11.75 ± 2.35	9.8 ± 1.7	10^{-3}

qq background

Validated on off-resonance data. Corrections needed in

- Normalisation

- Shape → event-by-event data-driven correction using OFF resonance data [J.Phys.Conf.Ser. 368 (2012) 012028]

 $B \rightarrow hadronic for B_{sig}$

Improved simulation of rare decays like $B \rightarrow Kn\bar{n}$, KK^0K^0 (total BF and decay model)

- using experimental inputs and
- incorporating isospin assumptions

qq background

Validated on off-resonance data. Corrections needed in

- Normalisation
- Shape → event-by-event data-driven correction using OFF resonance data [J.Phys.Conf.Ser. 368 (2012) 012028]

$B \rightarrow semileptonic for B_{sig}$

 $B \rightarrow Dn \pi \ell \nu$ events are often a source of background The BF's are not well known (see <u>SL gap</u>) Effort in Belle (II) to measure those modes and improve the simulation

- $B \rightarrow D^{(*)}\pi(\pi)\ell\nu$ [Belle, <u>PRD 107 (2023) 9, 092003</u>]
- $B \rightarrow D^{(*)} \eta \ell \nu$ via $B \rightarrow D^{(*)} \eta \pi$

- Hadronic tag already in use, analysis with SL FEI about to sta
- improvements in FEI performances expected with the next M

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025 01.22 FEI calibration **NEUTRALS** - Hadronic tag

- 47
- Hadronic tag already in use, analysis with SL FEI about to sta
- improvements in FEI performances expected with the next M

- K⁰_L escaping ECL can mimic neutrinos → prominent background in missing energy analyses
- Currently K⁰_L are not explicitly reconstructed due to modelling issues
- The impact is validated on a case-by-case basis

Improvements in K^0_L reconstruction and better agreement with simulation will allow to veto on them

Fake photons

- Deposits from charged particles/hadrons in the calorimeter can be wrongly reconstructed as photons
- This dilutes the separation power of E_{ECL} and degrades the precision of measurements with missing energy

Rescaling of the fake photon component in MC needed!

- Rare B decays allow to test SM and probe NP
- (Belle+)Belle II producing world-leading results

Best precision $B \to \rho \gamma$ $B \to K \nu \bar{\nu}$ Best UL $b \to d\ell^+ \ell^- B^+ \to K^+ \tau \ell B^0 \to K^{*0} \tau \tau$

- While waiting for more data, working on the tools to boost even further our sensitivity
- More to come $B \to X_s \gamma, B^+ \to K^+ \tau \tau, B \to X \ell \ell, B \to (K^*/\rho) \nu \bar{\nu}, ...$

ADDITIONAL MATERIAL

in B \rightarrow D^(*)KK⁰ decays Phys. Rev. D 109 (2024) 116009

Channel	Yield	Average ε	${\cal B}~[10^{-4}]$	Stat. significance $[\sigma]$
$B^- \rightarrow D^0 K^- K_S^0$	209 ± 17	0.098	$1.82 \pm 0.16 \pm 0.08$	> 10
$\overline{B}{}^0 ightarrow D^+ K^- K^0_S$	105 ± 14	0.048	$0.82 \pm 0.12 \pm 0.05$	10 $*$
$B^- \to D^{*0} K^- K^0_S$	51 ± 9	0.044	$1.47 \pm 0.27 \pm 0.10$	8 *
$\overline{B}{}^0 o D^{*+} K^- K^0_S$	36 ± 7	0.046	$0.91 \pm 0.19 \pm 0.05$	9 *
$B^- \to D^0 K^- K^{*0}$	325 ± 19	0.043	$7.19 \pm 0.45 \pm 0.33$	> 10
$\overline{B}{}^0 \to D^+ K^- K^{*0}$	385 ± 22	0.021	$7.56 \pm 0.45 \pm 0.38$	> 10
$B^- \to D^{*0} K^- K^{*0}$	160 ± 15	0.019	$11.93 \pm 1.14 \pm 0.93$	> 10
$\overline{B}{}^0 \to D^{*+} K^- K^{*0}$	193 ± 14	0.020	$13.12 \pm 1.21 \pm 0.71$	> 10

* First observations

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 **ANGULAR ANALYSIS OF B** \rightarrow K*e⁺e⁻

		Diagram type	
Spin structure	D_1	D_2	D_3
(A) $\underline{PS \rightarrow PS} + PS$	$\frac{\underline{B^{0} \rightarrow D^{-}} + \pi^{+}}{\underline{B^{0} \rightarrow \pi^{-}} + D^{+}}$ $\frac{\underline{B^{0} \rightarrow \pi^{-}} + D^{+}_{s}}{\underline{B^{+} \rightarrow \pi^{0}} + D^{+}_{s}}$	$\underline{B^0 \to \pi^0} + \bar{D}^0$	$\underline{B^+ \rightarrow \bar{D}^0} + \pi^+$
(B) <u>PS→PS</u> +V	$\begin{array}{c} \underline{B^0 \rightarrow D^-} + \varrho^+ \\ \underline{B^0 \rightarrow \pi^-} + D_s^{*+} \\ \underline{B^+ \rightarrow \pi^0} + D^{*+} \\ \underline{B^+ \rightarrow \pi^0} + D_s^{*+} \end{array}$	$\underline{B^0 \to \pi^0} + \overline{D^{*0}}$	$\underline{B^+ \rightarrow \bar{D}^0} + \varrho^+$
(C) $\underline{PS \rightarrow V} + PS$	$\frac{\underline{B^0 \to D^{*-}} + \pi^+}{\underline{B^0 \to \varrho^-} + D_s^+}$ $\frac{\underline{B^+ \to \varrho^0}}{\underline{B^+ \to \varrho^0}} + D_s^+$	$\underline{B^0 \to \varrho^0} + \bar{D}^0$	$\underline{B^+ \to \overline{D^{*0}}} + \pi^+$
(D) $\underline{PS \rightarrow V} + V$	$\frac{\underline{B^0 \rightarrow D^{*-}} + \varrho^+}{\underline{B^0 \rightarrow \varrho^-} + D_s^{*+}}$ $\frac{\underline{B^+ \rightarrow \varrho^0}}{\underline{B^+ \rightarrow \varrho^0}} + D_s^{*+}$	$\underline{B^0 \to \varrho^0} + \overline{D^{*0}}$	$\underline{B^+ \to \overline{D^{*0}}} + \varrho^+$

	Comparison of machine parameters							
933			IPAC2 K. Shi	020 bata	IPAC: at pr	2022 esent		
	KE achi	KB eved	Super 2020 M	′KEKB ⁄Iay 1 st	Super 2022 Ju	KEKB une 8 th	Super des	KEKB Sign
	LER	HER	LER	HER	LER	HER	LER	HER
I _{beam} [A]	1.637	1.188	0.438	0.517	1.321	1.099	3.6	2.6
# of bunches	15	85	78	83	22	49	25	00
I _{bunch} [mA]	1.033	0.7495	0.5593	0.6603	0.5873	0.4887	1.440	1.040
βy* [mm]	5.9	5.9	1.0	1.0	1.0	1.0	0.27	0.30
ξγ	0.129	0.090	0.0236	0.0219	0.0407 (0.0565)ª	0.0279 (0.0434) ^a	0.0881	0.0807
Luminosity [10 ³⁴ cm ⁻² s ⁻¹]	2.	11	1.	57	4.0	65	8	0
Integrated Luminosity [ab ⁻¹]	1.	04	0.	03 doubl	ed 0.4	40	5	0

a) High bunch current collision study

2022/June/12th

· · · ·

IPAC2022 SuperKEKB Y. Funakoshi

	LER	HER		
Beam Energy	4.0	7.0	GeV	
Circumference	30	16	m	
Crossing angle	8	3	mrad	
Crab waist ratio	80	40	%	
Beam current @Maximum Luminosity	1.321	1.099	А	
Number of bunches	22	49		
Bunch current @Maximum Luminosity	0.5873	0.4887	mA	
Total RF voltage V_c	9.12	14.2	MV	
Synchrotron tune v_s	-0.0233	-0.0258		
Bunch length σ_z	5.69	6.03	mm	
Momentum compaction α_c	2.98E-4	4.54E-4		
Betatron tune $v_x \ / \ v_y$	44.524/46.592	45.532/43.575		
Beta function at IP ${f eta_x}^* \ / \ {f eta_y}^*$	80/1	60/1	mm	
Measured vertical beam size (XRM) <code>@IP σ_v^*</code>	0.224	0.224	μm	-
Vertical beam-beam parameters ξ_y	0.0407	0.0279		
Beam lifetime	8	24	min.	🔶 Touschek domi
Luminosity (Belle 2 Csl)	4.	65	10 ³⁴ cm ⁻² s ⁻¹	

Better with muons/charged particles that can be vertexed Richer b-hadron program high backgrounds / high $\sigma_{\rm b}$

Properties	LHCb	Belle II
σ_b	$\mathscr{O}(100 \mu b)$	$\sim 1 \; \mathrm{nb}$
$\int \mathscr{L} dt \ (fb^{-1})$	$18 \rightarrow 300$	$(1+)0.6 \rightarrow 30-50$
Background level	$\sim 60 \ { m mb}$	\sim 4 nb
Typical efficiency	Low	High
π^0, K_S^0 efficiency	Low	High
Initial state	Not well known	Well known
Decay-time resolution	Excellent	Good
Collision spot size	Large	Tiny
Heavy bottoms hadrons	$B_{u,d,s,c}, b$ -baryons	$B_{u,d(,s)}$
B-flavour tagging capability	$\sim 5\%$	$\sim 35\%$
au physics capability	Limited	Excellent

Better with γ and ν Higher tagging efficiency Low backgrounds / low $\sigma_{\rm b}$

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 **WHAT FOLLOWS** B⁺ \rightarrow K⁺ $\nu \bar{\nu}$ 2311.14647

⇒B → K

LQCD <u>PRD 107, 014510 (2023)</u> LCSR <u>JHEP01(2019)150</u>

B → K* — less precise (15% vs 3% of K+) LQCD <u>1501.00367</u> LCSR <u>JHEP01(2019)150</u>

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $\blacksquare H \to K^+ \nu \bar{\nu} ITA$

Analysis relies on simulation for background suppression and fitting (sample-composition fit) The quality of simulation and corrections is validated via several control channels on data

- Kaon ID selection with $B^+ \rightarrow \overline{D}^0(\rightarrow K^+\pi^-)h^+$, $h = \{\pi, K\}$
- Signal efficiency with $B^+ \rightarrow K^+ J/\psi$ Remove $B^+ \rightarrow K^+ J/\psi$ and correct K^+ kinematics to match $B^+ \rightarrow K^+ \nu \bar{\nu}$
- $B \rightarrow X_c(K^0_L X)K^+$ background corrected/validated using pion/leptonenriched sidebands

Measuring a known and rare mode with similar BF to $B^+ \rightarrow K^+ \nu \bar{\nu}$ to further validate the inclusive analysis strategy

pion-ID instead of K-ID

 $\mathscr{B}(B^+ \rightarrow \pi^+ K^0) = (2.5 \pm 0.5) \times 10^{-5}$, consistent with PDG

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $\mathbf{B} \rightarrow \gamma \gamma \mathbf{SEARCH}$

Rarest decay searched at Belle II so far $\mathscr{B}_{SM}(B^0 \rightarrow \gamma \gamma) = (1.43^{+1.35}_{-0.80}) \times 10^{-8} [JHEP12(2020)169]$

Sensitive to heavy NP [PRD 58, 095014 (1998)]

Require good quality high energy γ

Reject photon candidates form asymmetric η and π^0 decays 90% qq + B⁰ $\rightarrow \pi^0 \pi^0$

Main syst uncertainties: Photon eff (3%), f⁰⁰ (2.5%) Signal efficiency for Belle (II) is 23(31)% for ~0.8 bkg/fb⁻¹

 $\mathscr{B}(B^0 \rightarrow \gamma \gamma) < 6.4 \times 10^{-8} @ 9$

sj 25

- Sensitivity approaching the SM prediction
- 5x improvement over previous best UL (BaBar) [PRD 83 032006 (2011)]

 $B \rightarrow K^* \gamma$ MEASUREMENT

$$\Delta_{0+} = \frac{\Gamma(B^0 \to K^{*0}\gamma) - \Gamma(B^+ \to K^{*+}\gamma)}{\Gamma(B^0 \to K^{*0}\gamma) + \Gamma(B^+ \to K^{*+}\gamma)}$$

$$\Delta \mathcal{A}_{CP} = \mathcal{A}_{CP}(B^+ \to K^{*+}\gamma) - \mathcal{A}_{CP}(B^0 \to K^{*0}\gamma)$$

 $\mathcal{A}_{CP} = \frac{\Gamma(\overline{B} \to \overline{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\overline{B} \to \overline{K}^* \gamma) + \Gamma(B \to K^* \gamma)}$

Measure \mathscr{B} , \mathscr{A}_{CP} and isospin asymmetry

- Uncertainty on BF ~ 4%, close to Belle results [PRL 119.191802]
- stat ~ syst errors (\mathscr{B})
- stat > syst errors (\mathscr{A} , Δ_{0+})
- Belle had observed the isospin violation at 3.1 σ $\Delta_{0+} = [+6.2 \pm 1.5(\text{stat}) \pm 0.6(\text{syst}) \pm 1.2(f_{+-}/f_{00})]\%$

			_
Channel	$\mathcal{A}_{CP}~(\%)$	$\mathcal{B}~(10^{-5})$	_
$B^0 \to K^{*0}[K^+\pi^-]\gamma$	$-3.2 \pm 2.4 \pm 0.4$	$4.15 \pm 0.10 \pm 0.11$	_
$B^0 \to K^{*0} [K^0_{\rm S} \pi^0] \gamma$	—	$4.24 \pm 0.37 \pm 0.23$	
$B^0 o K^{*0} \gamma$	$-3.2 \pm 2.4 \pm 0.4$	$4.16 \pm 0.10 \pm 0.11$	SM: (4.21±0.68)10 ⁻⁵ [1]
$B^+ \to K^{*+} [K^+ \pi^0] \gamma$	$1.5\pm4.2\pm0.9$	$3.91 \pm 0.18 \pm 0.19$	_
$B^+ \to K^{*+} [K^0_{\rm S} \pi^+] \gamma$	$-3.5\pm4.3\pm0.7$	$4.13 \pm 0.19 \pm 0.13$	
$B^+ \to K^{*+} \gamma$	$-1.0 \pm 3.0 \pm 0.6$	$4.04 \pm 0.13 \pm 0.13$	
$B \to K^* \gamma$	$-2.3 \pm 1.9 \pm 0.3$	$4.12 \pm 0.08 \pm 0.11$	_
	$\Delta \mathcal{A}_{CP}(\%)$	$\Delta_{0+}(\%)$	- SM: (4.9±2.6)%[2]
$B \to K^* \gamma$	$2.2\pm3.8\pm0.7$	$5.1\pm2.0\pm1.5$	_

Similar sensitivity wrt Belle due to improved
 K_S efficiency and ΔE resolution

Belle

362 fb

B+,

 $1.4 < E_{\nu}^{*}(GeV) < 3.4$

 K^{+}, K^{0}_{S}

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $\mathbf{B} \rightarrow \rho \gamma \mathbf{MEASUREMENT}$

$B \rightarrow \rho \gamma$ decays previously observed at Belle (605 fb⁻¹) [PRL 101 (2008) 129904] and BaBar (428 fb⁻¹) [PRD 78 (2008) 112001]

Sensitive to NP related to C7 NP search independent from $b \rightarrow s$ counterpart \mathscr{A}_{T} WA shows a slight tension

 $A_{\rm CP}(B \to \rho \gamma) = \frac{\Gamma\left(\overline{B} \to \overline{\rho}\gamma\right) - \Gamma\left(B \to \rho\gamma\right)}{\Gamma\left(\overline{B} \to \overline{\rho}\gamma\right) + \Gamma\left(B \to \rho\gamma\right)}$ $A_{\rm I} = \frac{2\Gamma(\stackrel{(-)}{B^0} \to \rho^0 \gamma) - \Gamma(B^{\pm} \to \rho^{\pm} \gamma)}{2\Gamma(\stackrel{(-)}{B^0} \to \rho^0 \gamma) + \Gamma(B^{\pm} \to \rho^{\pm} \gamma)}$

0.3

	WA	B+BII 2023		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\mathscr{B}(B^+ \to \rho^+ \gamma) \times 10^6$	0.98±0.25	1.29+0.20+0.10		$\int_{25}^{35} \frac{BD}{g\bar{q}} \rightarrow \rho\gamma$ $\int_{25}^{30} \frac{BD}{g\bar{q}} \rightarrow \rho\gamma$ $\int_{25}^{10} Ldt = 362 \text{ fb}^{-1}$
$\mathscr{B}(B^0\!\rightarrow\!\rho^0\gamma)\times10^6$	0.86±0.15	$0.75 \pm 0.13^{+0.10}_{-0.08}$		
\mathcal{A}_{I}	0.30 ^{+0.16} _{-0.13}	$0.14^{+0.11}_{-0.12} \pm 0.09$	\rightarrow Consistent with SM	
$\mathscr{A}_{\rm CP}({\rm B}^+ \to \rho^+ \gamma)$	-0.11 ± 0.33	$-0.08^{+0.15+0.01}_{-0.15-0.01}$	0.052 ± 0.028 [PRD 88, 094004 (2013)]	$ \begin{array}{c} 0 \\ -0.3 \\ -0.2 \\ -0.1 \\ 0 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ \Delta E \text{ (GeV)} \end{array} $

Challenge Low BF, large backgrounds from

- Continuum events: photon from largely asymmetric $\pi^0/\eta \rightarrow \gamma \gamma$ decays
 - \rightarrow 2 MVA classifiers, one for π^0/η veto, the other for generic $q\bar{q}$

-
$$B \rightarrow K^* \gamma$$
: K $\rightarrow \pi$ misID and much larger BF $|V_{td}/V_{ts}|^2 \simeq 0.04$

 \rightarrow M($\pi^*\pi$), π^* : kaon hyp. for the pion candidate with highest kaonID

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $\clubsuit b \to d\ell\ell$

Better sensitivity to NP than $b \rightarrow s\ell + \ell - ?$

Previous results: Belle (605 fb⁻¹) $B \rightarrow \pi \ell^+ \ell^-$ [PRD 78 011101 (2008)] BaBar (428 fb⁻¹) $B \rightarrow \{\pi, \eta\} \ell^+ \ell^-$ [PRD 88 032012 (2013)] LHCb (3 fb⁻¹) observed $B^+ \rightarrow \pi^+ \mu^+ \mu^-$, $B^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ [JHEP 10 (2015) 034, PLB 743 (2015) 46-55] Many unexplored modes with

- Electrons
 - \rightarrow lepton-flavour universality in b \rightarrow d transitions
- Neutrals

→ First search for $B^0 \rightarrow \omega \ell \ell$, $B^0 \rightarrow \rho^0 ee$, $B^{\pm} \rightarrow \rho^{\pm} \ell \ell$

MW>>mb>>LambdaQCD(QCD scale)

Operator Product Expansion

Long-distance physics at scale lower than mu is contained in operator matrix elements O_i are local effective operators renormalised at the scale mu=mb Short-distance physics at scale higher than mu is described by the Wilson coefficients

Operator Product Expansion (OPE)

OPE allows to disentangle SD and LD effects by "integrating out" the W boson and other fields with mass larger than a certain factorization scale.

We only need the coefficients C_7 , C_9 , C_{10} . The impact of the KK modes consists in an enhancement of C_{10} and a suppression of C_7 .

11

FIG. 1. The results of our fit for $f_+(q^2)$ and $f_0(q^2)$ form factors are depicted by the blue and red solid curves respectively. The dashed lines correspond to the results reported by FLAG [29]. The synthetic data points by HPQCD (green) [27] and by FNAL/MILC (orange) [28] are also shown for comparison. $P_{+,0}(q^2)$ are the inverse pole terms defined in Eq. (A5).

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 **RUN2** β_y^*

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $B \rightarrow K \nu \bar{\nu} SYST ITA$

TABLE I. Sources of systematic uncertainty in the ITA, corresponding correction factors (if any), their treatment in the fit, their size, and their impact on the uncertainty of the signal strength μ . The uncertainty type can be "Global", corresponding to a global normalization factor common to all SR bins, or "Shape", corresponding to a bin-dependent uncertainty. Each source is described by one or more nuisance parameters (see the text for more details). The impact on the signal strength uncertainty σ_{μ} is estimated by excluding the source from the minimization and subtracting in quadrature the resulting uncertainty from the uncertainty of the nominal fit.

Source	Correction	Uncertainty size	Impact on σ_{μ}
Normalization of $B\bar{B}$ background		50%	0.88
Normalization of continuum background		50%	0.10
Leading B -decays branching fractions		O(1%)	0.22
3 Branching fraction for $B^+ \to K^+ K^0_{\rm L} K^0_{\rm L}$	q^2 dependent $O(100\%)$	20%	0.48
p -wave component for $B^+ \to K^+ K^0_{\scriptscriptstyle m S} K^0_{\scriptscriptstyle m L}$	q^2 dependent $O(100\%)$	30%	0.02
Branching fraction for $B \to D^{(**)}$		50%	0.42
Branching fraction for $B^+ \to n\bar{n}K^+$	q^2 dependent $O(100\%)$	100%	0.20
Branching fraction for $D \to K_L X$	+30%	10%	0.14
Continuum background modeling, BDT_c	Multivariate $O(10\%)$	100% of correction	0.01
Integrated luminosity		1%	< 0.01
Number of $B\bar{B}$	—	1.5%	0.02
Off-resonance sample normalization	—	5%	< 0.01
Track finding efficiency		0.3%	0.20
Signal kaon PID	p, θ dependent $O(10 - 100\%)$	O(1%)	0.07
Photon energy scale		0.5%	0.07
Hadronic energy scale	-10%	10%	0.36
$K_{\rm L}^0$ efficiency in ECL	-17%	8%	0.21
Signal SM form factors	q^2 dependent $O(1\%)$	O(1%)	0.02
Global signal efficiency		3%	0.03
2 MC statistics	—	O(1%)	0.52

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $B \rightarrow K \nu \bar{\nu} SYST ITA$

	Source	Correction	Uncertainty size	Impact on μ
#1	Normalization $B\overline{B}$ background		30%	0.91
#3	Normalization continuum background		50%	0.58
	Leading B -decays branching fractions		O(1%)	0.1
	Branching fraction for $B^+ \to K^+ K_L^0 K_L^0$	q^2 dependent $O(100\%)$	20%	0.2
	Branching fraction for $B \to D^{(**)}$		50%	0.0044
	Branching fraction for $B^+ \to K^+ n \bar{n}$	q^2 dependent $O(100\%)$	100%	0.047
	Branching fraction for $D \to K_L X$	+30%	10%	0.029
	Continuum background modeling, BDT_c	Multivariate $O(10\%)$	100% of correction	0.29
	Number of $B\bar{B}$		1.5%	0.07
	Track finding efficiency		0.3%	0.013
	Signal kaon PID	p, θ dependent $O(10 - 100\%)$	O(1%)	0.0026
#2	Extra photon multiplicity	N_{γ} dependent $O(20\%)$	O(20%)	0.61
	K_L^0 efficiency		17%	0.31
	Signal SM form factors	q^2 dependent $O(1\%)$	O(1%)	0.056
	Signal efficiency		16%	0.42
#2	MC statistics		O(1%)	0.6 40

Systematic uncertainties

Incorporated in the fit as nuisance parameters

- Background normalisation BB (HTA, ITA)
- Limited size of simulation sample for the fit model (HTA, ITA)
- Knowledge of $B^+ \rightarrow K^+ K^0_L K^0_L$ BF and modelling of $B^+ \rightarrow D^{**} \ell \nu$ decays (HTA)
- ROE photon multiplicity mis-modeling (ITA)

G. DE MARINO (IJS) - U. OF LIVERPOOL (HEP SEMINARS) - 2025.01.22 $B \rightarrow K \nu \bar{\nu} PROJECTIONS$

*The "improved" scenario assumes a 50% increase in signal efficiency for the same background level

23%

	B	elle II Physics E	<u>Book</u>	
	Observables	Belle II $5 \mathrm{ab}^{-1}$	Belle II $50 \mathrm{ab}^{-1}$	
	$\Delta_{0+}(B \to K^* \gamma)$	0.70%	0.53%	
$B \to K^* \gamma$	$A_{CP}(B^0 \to K^{*0}\gamma)$) 0.58%	0.21%	
	$A_{CP}(B^+ \to K^{*+}\gamma)$	$\gamma) = 0.81\%$	0.29%	
	$\Delta A_{CP}(B \to K^* \gamma)$) 0.98%	0.36%	
	Be	lle II Physics B	ook	
	Obcommeblec	Dollo II 5 ab-	1 Dollo II 50 ol	-1
	Observables	Delle II 5 ab	Delle II SUat)
$B^0 \rightarrow \gamma \gamma$	$\operatorname{Br}(B_d \to \gamma \gamma)$	30%	9.6%	
••	$A_{CP}(B_d \to \gamma \gamma)$	78%	25%	

<u>Belle II snowmass paper</u> : 2 scenarios baseline (improved*) assuming SM

	Decay	$1{ m ab}^{-1}$	$5{ m ab}^{-1}$	$10{ m ab}^{-1}$	$50{ m ab}^{-1}$
	$B^+ \to K^+ \nu \bar{\nu}$	0.55(0.37)	0.28(0.19)	0.21(0.14)	0.11(0.08)
7	$B^0 o K^0_{ m S} \nu \bar{\nu}$	2.06(1.37)	1.31(0.87)	1.05(0.70)	0.59(0.40)
	$B^+ \to K^{*+} \nu \bar{\nu}$	2.04(1.45)	1.06(0.75)	0.83(0.59)	0.53(0.38)
	$B^0 \to K^{*0} \nu \bar{\nu}$	1.08 (0.72)	0.60 (0.40)	0.49 (0.33)	0.34(0.23)

more data will result in a observation of this decay

 $\operatorname{Br}(B_s \to \gamma \gamma)$

 $B^+ \to K^+ \nu \bar{\nu}$

_

Pixel Detector Silicon Vertex Detector

Belle II<<<<PXD/SUD
Belle II<<<CDC

Central Drift Chamber

Time-Of-Propagation counter

Belle II<<<TOP

Aerogel Ring-Imaging Cherenkov detector

Belle II<<<ARICH

Belle II<<<ECL

Electromagnetic Calorimeter

KLand Muon detector