

Probing the neutrino mass scale: first results and future perspectives of KATRIN

(Virtual) Particle Physics Seminar, U Liverpool November 18th, 2020

KATHRIN VALERIUS (KIT, Institute for Astroparticle Physics)

K. Valerius | Probing the v-mass scale with KATRIN

Neutrino masses & flavour oscillations

. v'

- → 3 flavour states and 3 mass states
 linked by unitary mixing matrix
 (analogous to CKM)
 → 2 mixing angles 0
- → 3 mixing angles θ_{ij} ,
- 1 CP phase δ ,
- 2 independent Δm^2 scales

 m^2 m_{2}^{2} m_{3}^{2} $\Delta m_{\rm sol}^2$ m_{1}^{2} ~10⁻⁵ eV² $\Delta m_{\rm atm}^2$ m_{2}^{2} $\Delta m_{\rm atm}^2$ ~10⁻³ eV² $\Delta m_{\rm sol}^2$ m_{1}^{2} T m_{3}^{2} 0 inverted normal

- Large neutrino mixing and tiny neutrino masses m(v_i) ≠ 0 established
- Which mass ordering? CP violation?
- What is the absolute v mass scale?

Complementary paths to the v mass scale

		e e n e n e e e e e e e e e e e e e e e	H H H H H H H H H H H H H H
	Cosmology	Search for 0vββ	Kinematics of weak decays
Methods	CMBR, GRS, lensing,	ββ-decay of ⁷⁶ Ge, ¹³⁰ Te, ¹³⁶ Xe,	β-decay of ³ H, EC of ¹⁶³ Ho
Observable	$M_{\nu} = \sum_{i} m_{i}$	$m_{\beta\beta}^2 = \left \sum_i U_{ei}^2 m_i\right ^2$	$m_{\beta}^2 = \sum_i U_{ei} ^2 m_i^2$
Model dependence	Multi-parameter cosmological model	 Majorana nature of v, lepton number violation BSM contributions other than m(v)? Nuclear matrix elements 	Direct, only kinematics; no cancellations in incoherent sum

Neutrino mass from β-decay kinematics

Theory: Starting from Fermi's seminal "attempt at a theory of β -rays"

Fermi, Z. Phys., 1934

Experiment: Tritium identified early on as most suitable β -emitter

NATURE

August 21, 1948 Vol. 162

Beta Spectrum of Tritium

THE β -spectrum of tritium (¹H³) is of particular interest because : (1) the relatively simple structure of the ₁H³ nucleus makes it well suited to a test of the Fermi theory of β -decay ; (2) the unusually low energy of the β -particles means that the shape of the spectrum near the upper limit is an extremely sensitive function of the rest mass of the neutrino if the Fermi theory is confirmed ; (3) a theoretical discrepancy¹ exists between the half-life² and the upper energy limit, as recently measured³ ; (4) the mass difference (₁H³ - ₂He³) can be accurately determined.

Curran *et al.*

Kinematic measurement can probe for heavier v states \rightarrow eV- and keV-scale sterile v

Neutrino mass from β-decay kinematics

High-resolution spectrometer: MAC-E filter

The Karlsruhe Tritium Neutrino Experiment

- Experimental site: Karlsruhe Institute of Technology (KIT)
- International collaboration: ~150 members from 20 institutions in 6 countries (D, US, CZ, RU, F, ES)
- Goal: Improve sensitivity on m(ve)
 from 2 eV (previous experiments) to 0.2 eV (90% C.L.) within 2019-2024

Working principle of KATRIN

KATRIN's high-luminosity tritium source

Gaseous molecular tritium source of

- high activity (~100 GBq)
- high gas column density (5.10¹⁷ cm⁻²) and stability (0.1%)
- high isotopic purity ($\epsilon_T > 95\%$)

- closed tritium loops: ~100 m of piping
- instrumentation: > 800 sensors and valves

Measurement of the response function

- Energy loss of electrons by inelastic scattering are key systematics in v-mass measurement
- Measurement of "integrating" response function by precision electron source with sharp energy & defined angular range
- Time-of-flight mode adds access to differential energy loss spectrum

Energy loss function from time-of-flight

ToF signal from pulsed e-gun (70 ns at 20 kHz): High-pass filter turned into narrow band-pass -> recover "differential" spectrum

- Empirical parameterisation replaced by physics-motivated composite model
 Triple Gauss for electronic excitation + ionisation tail
- Greatly improved data-driven understanding of one of the key systematics

KATRIN data taking

- May/June 2018: Tritium commissioning (Ic
 First high-quality β spectra, validation c
 [EPJ C 80 (2020) 264]
 - → Search for keV sterile neutrinos [forthcoming publication]

KATRIN data taking

- May/June 2018: Tritium commissioning (low activity ~500 MBq)
 - First high-quality β spectra, validation of spectrum model & analysis tools [EPJ C 80 (2020) 264]
 - → Search for keV sterile neutrinos [forthcoming publication]
- April/May 2019: Start of neutrino-mass measurements. Since then:
 - Ramp-up of source strength
 - Improved background suppression
 - In-depth systematics studies, e.g. plasma properties
 - Improved calibration methods

KATRIN's first neutrino mass campaign

March 4, 2019:

Start large-scale throughput of high-purity tritium in closed loop (4.9 g/day)

April 10 - May 13, 2019: four weeks (780 hrs) of β -scans at 24.5 GBq

→ equivalent to few days out of 1000 planned days at nominal activity (100 GBq)

- After quality selection:
 274 β-scans x 2.5 hrs
- Alternating up/down scans
- 27 HV set-points per scan
- Event sample:
 - 2 Million electrons

Stability of spectral scans

Statistical and systematic uncertainties

- First dataset is strongly statistics-dominated (5 days nominal KATRIN only ...). Total statistics budget: $\sigma_{stat} = 0.97 \text{ eV}^2$ factor 2
- Systematic uncertainties are well understood. Total systematics budget: $\sigma_{syst} = 0.32 \text{ eV}^2$
- Systematics breakdown for first Science Run:
 - Non-Poissonian background partBackground slopeColumn density fluctuationsMagnetic fieldsHV stackingMolecular final states spectrum0.0Energy loss distribution

 $0.298 \, eV^2$

improves on

Mainz & Troitsk by

factor 6

→ since May 2020: improved radon retention system

First neutrino mass result

- 2 million events in total
- Shape-only fit, 4 free parameters: m²(v), E₀, normalisation, background
- Excellent goodness-of-fit: $\chi^2 = 21.4$ for 23 d.o.f. (p = 0.56)
- Best-fit value: $\mathbf{m}_{
 u}^{2} = \left(-1.0^{+0.9}_{-1.1}
 ight) \mathrm{eV}^{2}$
- New upper limit: m_v < 1.1 eV (90% C.L.) = sensitivity</p>
- Bayesian Credible Interval (flat prior, $m^2 > 0$) $m_v < 0.9 \text{ eV} (90\% \text{ C.I.})$

15.0

17.5

12.5

10.0

Physics reach of KATRIN: search for extra neutrino states

Neutrinos mix: generate "kink" in production at $E = E_0 - m_e$

$\frac{\mathrm{d}\Gamma}{\mathrm{d}E} = \cos^2(\theta_s) \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(m_\beta^2) + \sin^2(\theta_s) \frac{\mathrm{d}\Gamma}{\mathrm{d}E}(m_s^2)$

 $\cos^2\Theta \frac{\mathrm{d}\Gamma}{\mathrm{d}F}(m_\beta^2)$

 $\sin^2\Theta \frac{d\Gamma}{dE}(m_s^2)$

with sterile neutrino

no sterile neutrino

Search for sterile neutrinos at the eV scale

- Same data set and basic analysis procedure as for "m_β" neutrino mass search
- At E₀-40 eV, signal to background ratio is ~70 (favourable compared to typical oscillation experiments)
- Apply 3+1 sterile neutrino model
- Grid search in $(m_4, |U_{e4}|^2)$ plane
- m_β fixed to minimum allowed value (0.009 eV) according to oscillations

Search for sterile neutrinos at the eV scale

KATRIN Collab., arXiv:2011.05087

Region of high Δm^2 :

- Improve exclusion with respect to DANSS, PROSPECT, STÉRÉO
- Exclude large Δm^2 solution preferred by reactor and gallium anomalies

Region of low Δm^2 :

- Improve limits by Mainz and Troitsk
- Neutrino-4 hint at the edge of 95% exclusion

Search for sterile neutrinos at the eV scale

KATRIN Collab., arXiv:2011.05087

- Demonstrate potential of KATRIN to probe sterile neutrino hypothesis
- Complementarity with shortbaseline oscillation experiments

Future prospects:

large fraction of reactor & gallium anomaly and Neutrino-4 region of interest will be probed with full KATRN data set

Prospects for keV sterile neutrino search

publication in preparation

Proof of principle:

- Deep scan (1.6 keV below E₀)
- Iow-activity commissioning data
- Excellent agreement of model and data (p-value = 0.6)
- Sensitivity to $\sin^2\theta = 10^{-3}$ at m₄ = 0.4 keV

- Future perspectives: Novel multi-pixel Silicon Drift Detector array (TRISTAN)
 - High-statistics search

Target sensitivity of $\sin^2\theta < 10^{-6}$

Prospects for keV sterile neutrino search

- High count rates at ~few keV below endpoint
- Tiny sterile admixture $sin^2(\theta_s)$ expected
- Best sensitivity for differential measurement, need energy resolution ~300 eV or better

TRISTAN detector for KATRIN: Silicon Drift Detector (SDD) arrays developed at MPP / HLL Munich

[Mertens et al., J. Phys. G 46 (2019) 065203 & 2007.07136]

full array

Summary and Outlook

- Spring 2019: Inaugurational neutrino-mass campaign (4 weeks, at reduced source strength)
- New upper limit m(v) < 1.1 eV (90% CL) improves on previous experiments by factor ~2
- Ongoing analyses: more data sets
 - at increased source luminosity (2019)
 - with improved background reduction (2020)
- Ongoing data-taking: Collecting ~200 measurement days in 2020 towards target sensitivity of 200 meV (~5 cal. years)
- Beginning to explore KATRIN's physics potential beyond the neutrino mass:
 - search for sterile neutrinos at eV to keV scales
 search for exotic weak interactions, Lorentz
 invariance violation, ...

