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๏ High luminosity LHC plan 

๏ Experimental precision for HL-LHC of  for many observables 

๏ Theoretical predictions at higher orders are required to match experimental 
precision. Typically: at least NNLO QCD
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Main bottleneck: 2-loop 5-point scattering amplitudes
Cross sections for : 

 

Partonic cross section: 

 

Amplitude: 

h1h2 ⟶ f

dσh1h2→f = ∑
i,j=q,q̄,g

∫ ∫ dx1dx2 ℱi/h1
(x1, μ2)ℱj/h2

(x2, μ2) d ̂σij→f( ⃗s, μ2)

d ̂σij→f ∽ ∫ dΦ |𝒜 |2

𝒜 ∽ ∑
i

Fi( ⃗s; ε) Gi( ⃗s; ε)

Feynman Integrals
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๏  production is relevant for BSM searches and 
constitutes a significant background for  and  
production in Standard Model 

๏ Theoretical predictions systematically 
underestimate measured rates [ATLAS 2024 and CMS 
2023]. Currently within uncertainties, but 
experimental precision is set to increase 

๏ NNLO: 2-loop amplitude approximated with soft-W 
and massification [Buonocore et al. 2023] 

๏ Exact 2-loop amplitude is needed to remove 
uncertainty of approximation

tt̄W
tt̄H tt̄tt̄

Motivation

4



What’s the challenge?
๏ Complexity originates from: 

• Massive internal propagators 

• Five external legs, two different external scales 

๏ Analytic complexity 

• Functions beyond the polylogarithmic case 

๏ Algebraic complexity 

• State of the art calculations: usually localised in the amplitude part of the 
calculation 

• Here: large expressions already in the differential equations for the integrals
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Status of related calculations
๏ : complete NNLO QCD corrections [Czakon et al. 2012, 2013 and 2016; Catani et al. 

2019 and 2020] 

๏ : NLO QCD corrections up to  [Badger et al. 2022], two-loop integrals in the 
leading colour approximation [Badger et al. 2023 and 2024; Becchetti et al. 2025] and 
numerical evaluation of the amplitude [Badger et al. 2024] 

๏ : NLO QCD corrections up to  [Buccioni et al. 2024]. Numerical results for 
a set of two-loop Feynman integrals [Febres Cordero et al. 2024] and two-loop  
part of the quark-initiated scattering amplitudes [Agarwal et al. 2024] 

๏ : NLO QCD corrections [Lazopoulos et al. 2008, Kardos et al. 2012], NLO QCD 
and EW corrections [Frixione et al. 2015]

tt̄

tt̄j 𝒪(ε2)

tt̄H 𝒪(ε2)
Nf

tt̄Z
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t̄(p1) + t(p2) + d̄(p3) + W(p4) + u(p5) ⟶ 0
Kinematics

๏ Momentum conservation: 

 

๏  

๏ 7 Invariants: 

, with 

 

๏ Dimensional regularisation: 

p1 + p2 + p3 + p4 + p5 = 0

p2
1 = p2

2 = m2
t , p2

3 = p2
5 = 0, p2

4 = m2
W

⃗x := {s12, s23, s34, s45, s15, m2
t , m2

w}
sij = (pi + pj)2

d = 4 − 2ε

 

W(p4)
d̄(p3)

u(p5)
t̄(p1)

t(p2)
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Integral families

 

๏ Sectors: same non-negative exponents 

๏ Top sector: maximum number of non-negative exponents 

๏ Amplitude calculations: express  and  in terms of propagators 

 Beyond one-loop we need irreducible scalar products (ISPs). Here: 3 ISPs

Ga1,…,a11
= ∫ ddk1ddk2

1
Da1

1 ⋯Da11
11

, (a1, …, a11) ∈ ℤ11

ki ⋅ pj ki ⋅ kj

⟹
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Propagators of Feynman integrals



 integral familiestt̄W
p2

p1

k2
k1

p3

p4

p5

k1 + k2

p5

p4

k2
k1

p1

p2

p3

k1 + k2

p1

p5

k2
k1

p2

p3

p4

k1 + k2

Family : 122 MIsF2 Family : 131 MIsF3Family : 141 MIsF1
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IBPs and reduction to Master Integrals
๏ Feynman integrals satisfy linear relations: integration by part identities (IBPs) [Chetyrkin, Tkachov 

’81] 

 

๏ Reduction to master integrals 

 

๏ Laporta algorithm: IBPs generated for some seeding [Laporta 2000] 

๏ Finite Fields techniques [von Manteuffel, Schabinger 2014; Peraro 2016] to tackle algebraic complexity 

๏  [Wu et al. 2023] and  [Peraro 2019] to generate and solve an optimised system 
of IBPs

0 = ∫ ddk1ddk2
∂

∂kμ
l

vμ

Da1
1 ⋯Da11

11
, vμ ∈ {kμ

j , pμ
j }

∑⃗
ak

c ⃗ak
( ⃗x; ε)G ⃗ak

( ⃗x; ε) = 0 ⟹ G ⃗a( ⃗x; ε) = ∑
j

c ⃗a,j( ⃗x; ε) Ij( ⃗x; ε)

𝙽𝚎𝚊𝚝𝙸𝙱𝙿 𝙵𝚒𝚗𝚒𝚝𝚎𝙵𝚕𝚘𝚠
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Method of differential equations

๏ Using IBPs we can construct linear differential equations (DEs) for the MIs 

 

๏ Many strategies to solve the differential equation. Our choice: semi-numerical 
approach using  [Hidding 2020] 

• Suitable for very general problems 

• The implementation supports only rational functions and simple square roots

∀ ξ ∈ ⃗x : ∂ξIi( ⃗x; ε) = ∑⃗
a

ci, ⃗a( ⃗x; ε)G ⃗a( ⃗x; ε)

⟹ ∂ξ ⃗I( ⃗x; ε) = Bξ( ⃗x; ε) ⋅ ⃗I( ⃗x; ε)

𝙳𝚒𝚏𝚏𝙴𝚡𝚙

[Kotikov ’91; Bern, Dixon, Kosower ‘94; Gehrmann, Remiddi 2000]

IBP reduction
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È
a

µ

๏Generalised series expansion method [Moriello 2019]: approximate the solution in 
terms of logs along the integration path

Semi-numerical evaluation

• Work in the physical region: no analytic continuation needed!

Target point in the 
physical region

Target point outside 
the physical region

Boundary point 
(  [Liu, Ma 
2022])
𝙰𝙼𝙵𝚕𝚘𝚠

Physical region

Branch cut of the DEs
⃗G ∽ ⃗G0 + ∑ Ãt log(t − τ)k1(t − τ)k2
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What is a good choice of basis of MIs?
๏ The basis of MIs is not unique. A good choice of basis can greatly simplify the DEs 

๏ [Henn 2014]: DEs in canonical form (no general algorithm) 

 

๏ In the best understood cases the one-forms are logarithmic 

 

•  dependence factorises: solution at each order depends only on previous order 

•  Full control over linear relations through iterated integrals representation of the solution  
Construction of a minimal basis of special functions, which simplifies the representation of the 
amplitude 

•  Well-established techniques to handle the solution of the DEs

d ⃗I( ⃗x; ε) = ε dÃ( ⃗x) ⃗I( ⃗x; ε)

dÃ( ⃗x) = ∑
i

ai d log Wi( ⃗x)

ε

⟹

one-forms with at 
most simple poles

Letters

13



How do we construct a 
canonical basis?
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Dlog-integrands and leading singularities
๏ Conjecture: integrals with a loop-integrand with at most simple poles and a 

constant leading singularity are good MIs 

∝ ∫
dα1 ∧ dα2

p2(α1α2 − z)[(1 + α1)(1 + α2) − z]

= ∫
dα1

p2(α2
1 + α1 + z) [d log(α1α2 − z) − d log(1 + α1 + α2 + α1α2 − z)]

=
1

p2 1 − 4z ∫ d log(…) ∧ d log(…)

2 D
p2

m2

Leading 
singularity (LS)

dlog-form

๏Commonly: rational functions and simple square roots

d log(z + c) =
dz

z + c
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[Arkani-Hamed, Bourjaily,

Cachazo, Trnka 2012]



Beyond the dlog-case: elliptic integrals
๏ During the computation of the leading singularity, we can also bump into an elliptic 

curve  

 

๏ The leading singularity contains elliptic functions 

 

๏Transcendental functions are needed to put the differential equation in canonical form 

• Progress on general strategy in recent years (see e.g. [Görges et al. 2023]) 

• Still no general method to efficiently evaluate these functions

∫
dz

𝒫4(z)
∧ d log(…), 𝒫4(z) = (z − a1)(z − a2)(z − a3)(z − a4)

∫
dz

𝒫4(z)
∝ K(…)
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The “simple”  elliptic curvestt̄W

๏ Comparable with known elliptic curves (e.g. 
[Badger et al. 2024]) 

๏ 4-point kinematics  depend on less than 7 
variables 

๏ 3 MIs for each sector 

๏ Elliptic curve of the form 

 

๏ The curves are disctinct, as we checked by 
computing the j-invariant

⇒

𝒫4(z) = (z − m2
t )(z − 3m2

t )𝒫2(z)

p4

p2

p3

p1

p5

p2

p3

p1

p5

p3
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p2

p1

p3

p4

p5

The “monster”  elliptic curvett̄W

๏ First ever study of an elliptic curve for a 5-point 
kinematics  dependence on all 7 invariants 

๏ 7 MIs in the sector 

๏ Computation of LS leads to 

 

⇒

∫ ( dz
𝒬4(z)

∧ d log(α(y, z)) −
dz

𝒬4(z)†
∧ d log(α(y, z)†))

Same j-invariant  same elliptic curve⇒
f † ≡ f |r1→−r1

, r1 = G(p1, p2, p3, p4)
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Algebraic complexity of the monster curve
๏  has degree 4 in  and degree 14 in , involves  and 2787 terms 

๏Discriminant of the elliptic curve contains a degree 14 polynomial in  

• 2547 terms 

• File size is 94 KB 

• Appears in the denominators of the DEs  one of the singularities of the 
solution 

๏ -factorised DEs challenging even with known techniques

𝒬4(z) z ⃗x r1

⃗x

⟹

ε

19



How we deal with elliptics

๏ Simple -dependence 

• No -poles in the differential equation 

• Maximum degree as low as possible (2 in this case) 

๏ Elliptic MIs finite 

• Poles of the amplitude dictated by tree-level and 1-loop: no elliptic functions 

• Allows to apply the method of [Badger et al. 2025] to construct a basis of special 
functions up to the finite part 

Apparent trade-off between the above criteria and the algebraic complexity: 

We allow for a spurious degree-9 polynomial in the denominators

ε

ε

Aims: obtain a good basis compatible with 𝙳𝚒𝚏𝚏𝙴𝚡𝚙

! 
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p4

p3

p2

p5

p1

Beyond (?) the dlog-case: nested square roots

๏ For  [Febres Cordero et al. 2024] and  [Badger 
et al. 2024] leading singularities involving nested 
square roots were observed. This is the case also 
here 

 

 

๏ Nested square roots are not supported by  

๏ Due to the elliptics, the differential equation will not 
be -factorised anyway 

 keep the differential equation linear in 

tt̄H tt̄j

NR± = q1( ⃗x) ± q2( ⃗x)r1, r1 = G(p1, p2, p3, p4)

NR+
r1→−r1 NR−

DiffExp

ε

⟹ ε
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Final representation of the differential equation
๏ We selected a basis 

•  factorised as much as possible 

• Linear in  for the nested square root sectors and at most quadratic in the elliptic 
sectors 

• Elliptic integrals finite 

๏ Write connection matrix in terms of independent one-forms 

ε

ε

d ⃗I( ⃗x; ε) = dA(F)( ⃗x; ε) ⋅ ⃗I( ⃗x; ε), dA(F)( ⃗x; ε) =
2

∑
k=0

εk[∑
α

c(F)
kα d log(Wα( ⃗x)) + ∑

β

d(F)
kβ ωβ( ⃗x)]
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Some numbers…

Nested 
square root 

sectors

“Simple” 
elliptic 
sectors

Monster 
elliptic 
sector

# square 
roots # letters # one-forms

Dimension 
one-forms 

file

Family 1 Yes 2 No 8 101 119 6.7 MB

Family 2 No 1 Yes 11 122 84 311 MB

Family 3 No 1 Yes 12 137 96 316.5 MB
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Numerical checks
๏  implementation with in-house path-parametrisation 

๏ Checked against  at 10 physical phase-space points, to 25 digits accuracy 

๏ We verified that we can integrate between any of these 10 points with 

𝙳𝚒𝚏𝚏𝙴𝚡𝚙

𝙰𝙼𝙵𝚕𝚘𝚠

𝙳𝚒𝚏𝚏𝙴𝚡𝚙
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๏ Basis and differential equation for all the integral families relevant for  
production at 2-loop at leading color 

๏ Addressed complications arising from nested square roots and elliptic integrals 

๏ Semi-numerical solution using   

๏Next steps 

1. 2-loop amplitude 

2. -factorised differential equation

tt̄W

𝙳𝚒𝚏𝚏𝙴𝚡𝚙

ε

Summary and Outlook
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๏ Basis and differential equation for all the integral families relevant for  
production at 2-loop at leading color 

๏ Addressed complications arising from nested square roots and elliptic integrals 

๏ Semi-numerical solution using   

๏Next steps 

1. 2-loop amplitude 

2. -factorised differential equation

tt̄W

𝙳𝚒𝚏𝚏𝙴𝚡𝚙

ε

Summary and Outlook

Thank you!
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Backup slides
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Definitions for elliptic curves
๏ Cross ratio 

 

๏Elliptic integral of the first kind 

 

๏ Periods of the elliptic curve 

,  

with  

๏ J-invariant 

λ =
(a1 − a4)(a2 − a3)
(a1 − a3)(a2 − a4)

K(λ) = ∫
1

0

dt

(1 − t2)(1 − λt2)

ω1 = 2c4 ∫
a3

a2

dz
y

= 2K(λ), ω2 = 2c4 ∫
a2

a1

dz
y

= 2iK(1 − λ)

c4 =
1
2

(a1 − a3)(a2 − a4)

j = 256
(1 − λ(1 − λ))3

λ2(1 − λ)2
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