Progress on two-loop integrals for top-pair production plus a W boson

Theory and Phenomenology of Fundamental Interactions

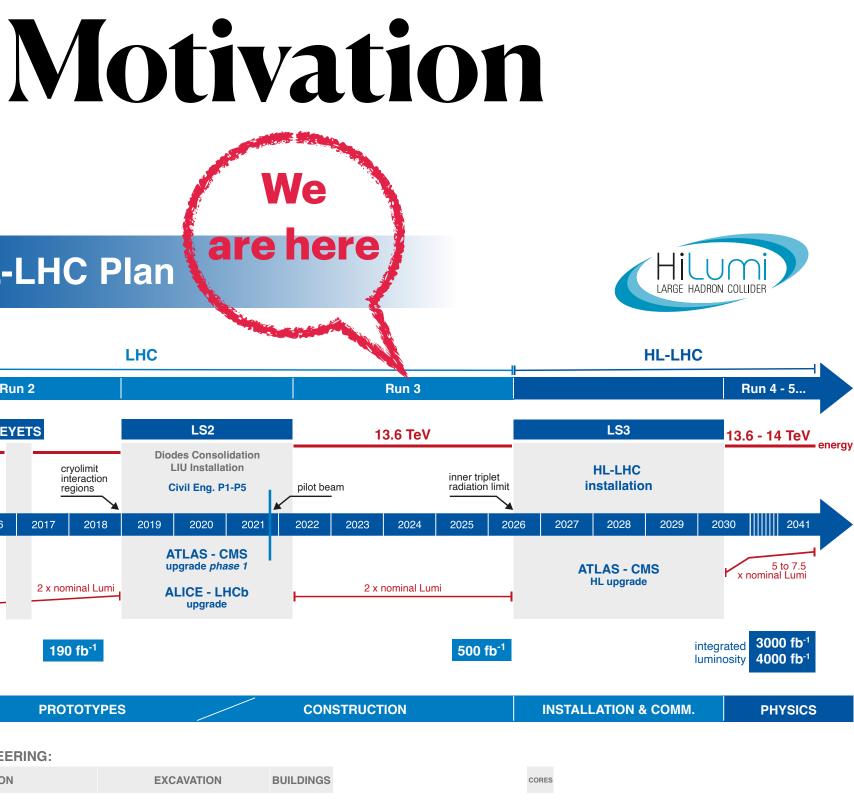
UNIVERSITY AND INFN · BOLOGNA

Scattering Amplitudes@Liverpool, 26/03/2025

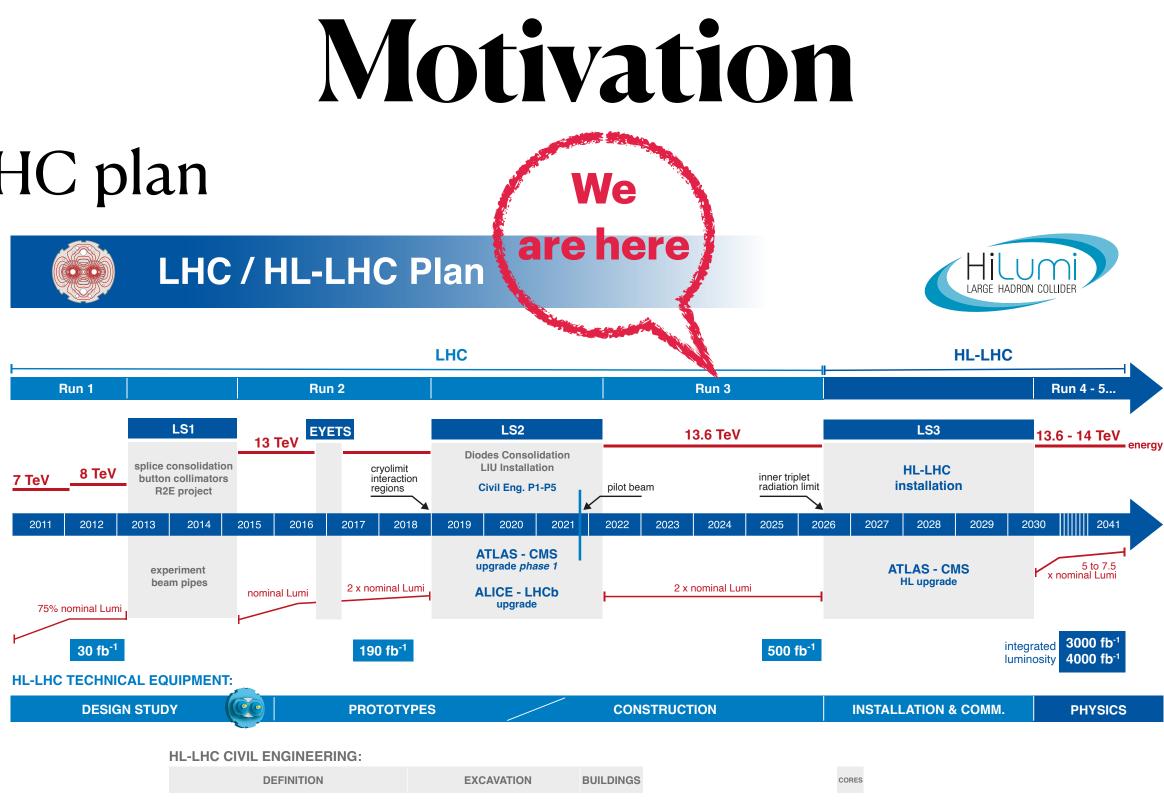
Mattia Pozzoli

Istituto Nazionale di Fisica Nucleare Sezione di Bologna

In collaboration with M. Becchetti, D. Canko, V. Chestnov, T. Peraro and S. Zoia



• High luminosity LHC plan



- Experimental precision for HL-LHC of $\mathcal{O}(1\%)$ for many observables
- precision. Typically: at least NNLO QCD

Theoretical predictions at higher orders are required to match experimental

2

Main bottleneck: 2-loop 5-point scattering amplitudes

Cross sections for $h_1h_2 \longrightarrow f$:

$$\mathrm{d}\sigma_{h_1h_2\to f} = \sum_{i,j=q,\bar{q},g} \iint \mathrm{d}x_1 \mathrm{d}x_2 \,\mathcal{G}$$

Partonic cross section:

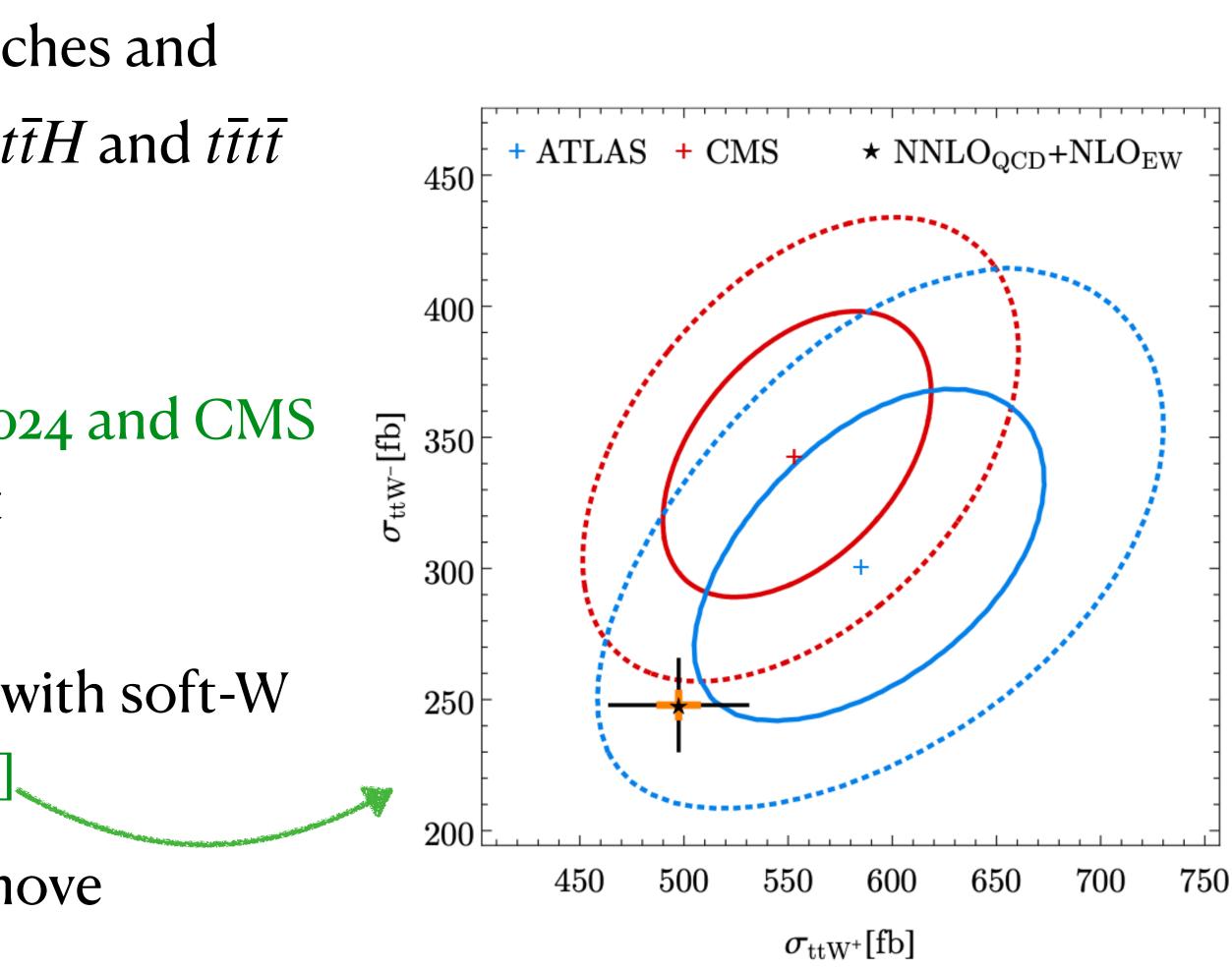
Amplitude:

$$\mathscr{A} \sim \sum_{i}^{i}$$

 $\mathcal{F}_{i/h_1}(x_1,\mu^2)\mathcal{F}_{j/h_2}(x_2,\mu^2)(\mathrm{d}\hat{\sigma}_{ij\to f}(\vec{s},\mu^2))$ $\mathrm{d}\hat{\sigma}_{ij\to f} \sim \left|\mathrm{d}\Phi\left|\mathscr{A}\right|^2\right)$ Feynman Integrals $F_i(\vec{s};\varepsilon)(G_i(\vec{s};\varepsilon))$

Motivation

- $t\bar{t}W$ production is relevant for BSM searches and constitutes a significant background for $t\bar{t}H$ and $t\bar{t}t\bar{t}$ production in Standard Model
- Theoretical predictions systematically underestimate measured rates [ATLAS 2024 and CMS 2023]. Currently within uncertainties, but experimental precision is set to increase
- NNLO: 2-loop amplitude approximated with soft-W and massification [Buonocore et al. 2023]
- Exact 2-loop amplitude is needed to remove uncertainty of approximation



What's the challenge?

• Complexity originates from:

- Massive internal propagators
- Five external legs, two different external scales
- Analytic complexity
 - Functions beyond the polylogarithmic case
- Algebraic complexity
 - State of the art calculations: usually localised in the amplitude part of the calculation

• Here: large expressions already in the differential equations for the integrals

Status of related calculations

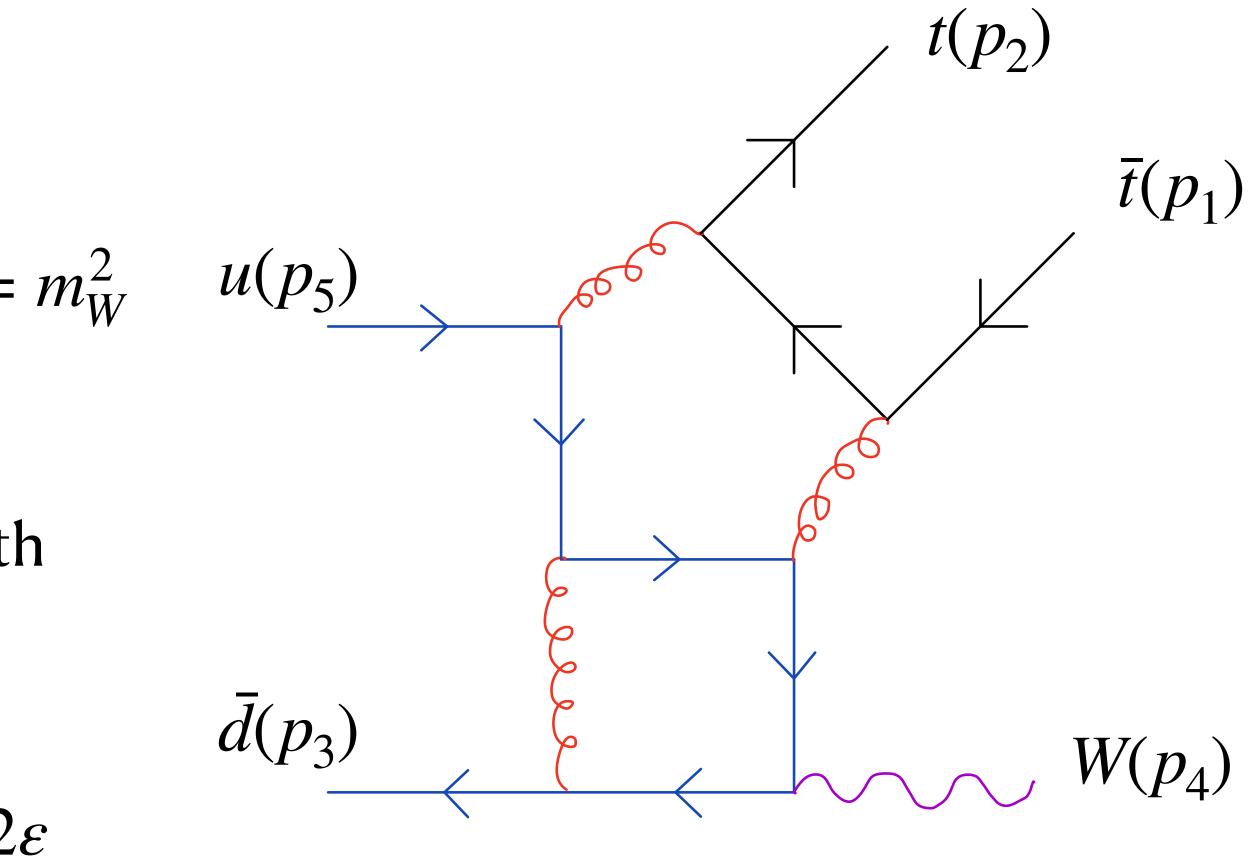
- $t\bar{t}$: complete NNLO QCD corrections [Czakon et al. 2012, 2013 and 2016; Catani et al. 2019 and 2020]
- $t\bar{t}j$: NLO QCD corrections up to $\mathcal{O}(\varepsilon^2)$ [Badger et al. 2022], two-loop integrals in the leading colour approximation [Badger et al. 2023 and 2024; Becchetti et al. 2025] and numerical evaluation of the amplitude [Badger et al. 2024]
- $t\bar{t}H$: NLO QCD corrections up to $\mathcal{O}(\varepsilon^2)$ [Buccioni et al. 2024]. Numerical results for a set of two-loop Feynman integrals [Febres Cordero et al. 2024] and two-loop N_f part of the quark-initiated scattering amplitudes [Agarwal et al. 2024]
- $t\bar{t}Z$: NLO QCD corrections [Lazopoulos et al. 2008, Kardos et al. 2012], NLO QCD and EW corrections [Frixione et al. 2015]

Kinematics

Momentum conservation: $p_1 + p_2 + p_3 + p_4 + p_5 = 0$ • $p_1^2 = p_2^2 = m_t^2$, $p_3^2 = p_5^2 = 0$, $p_4^2 = m_W^2$ • 7 Invariants: $\vec{x} := \{s_{12}, s_{23}, s_{34}, s_{45}, s_{15}, m_t^2, m_w^2\}$, with $s_{ij} = (p_i + p_j)^2$

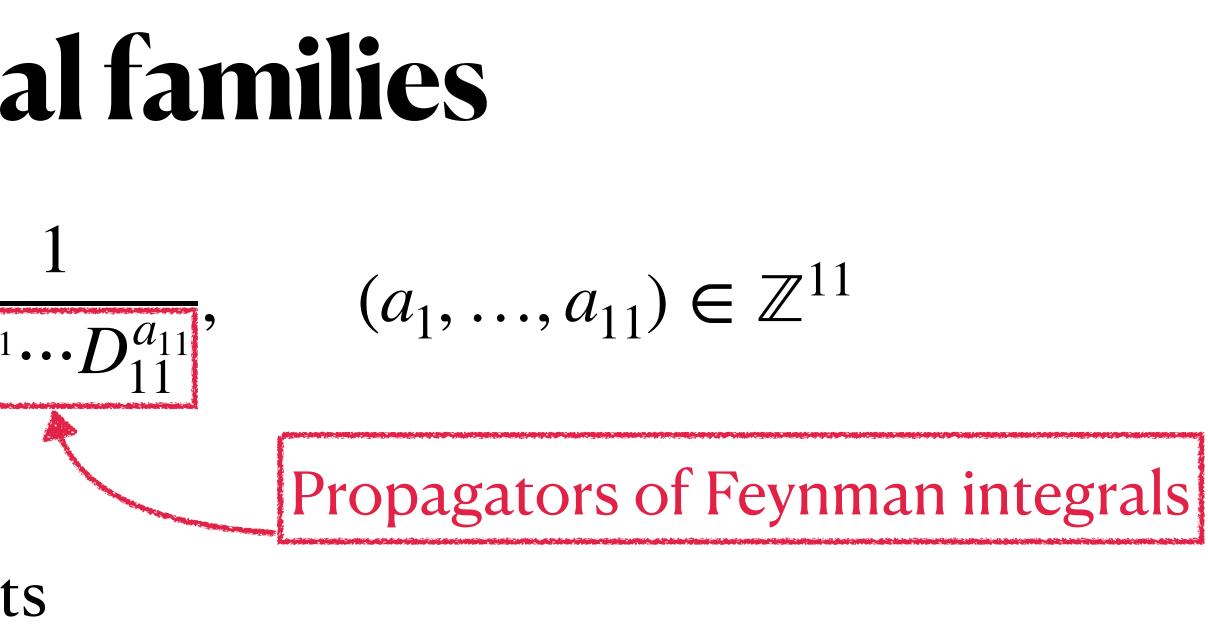
• Dimensional regularisation: $d = 4 - 2\varepsilon$

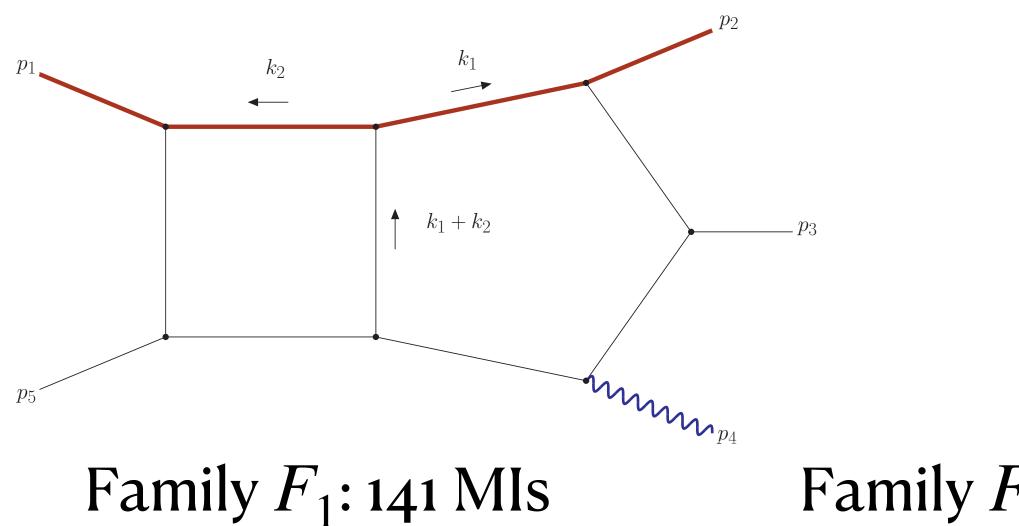
 $\overline{t}(p_1) + t(p_2) + \overline{d}(p_3) + W(p_4) + u(p_5) \longrightarrow 0$

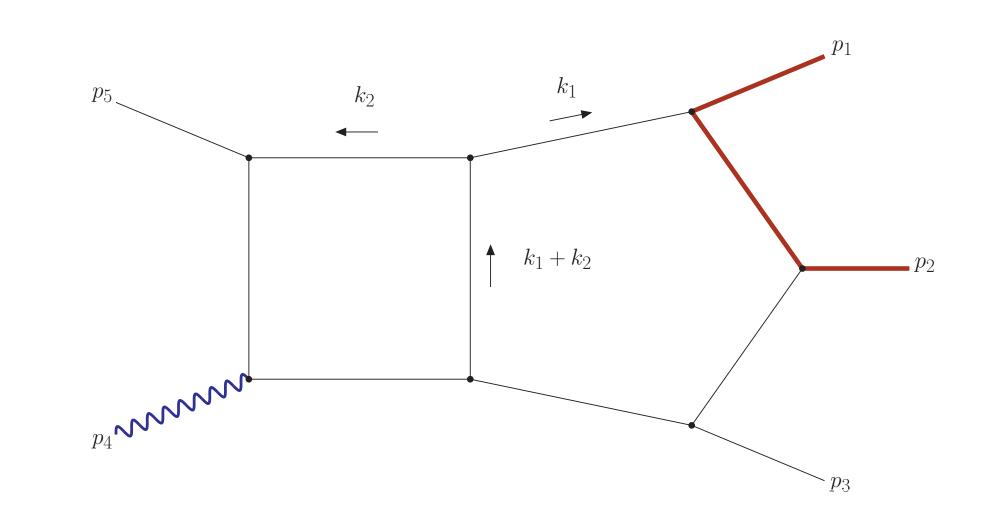


$$G_{a_1,\ldots,a_{11}} = \int \mathrm{d}^d k_1 \mathrm{d}^d k_2 \overline{D_1^{a_1}}$$

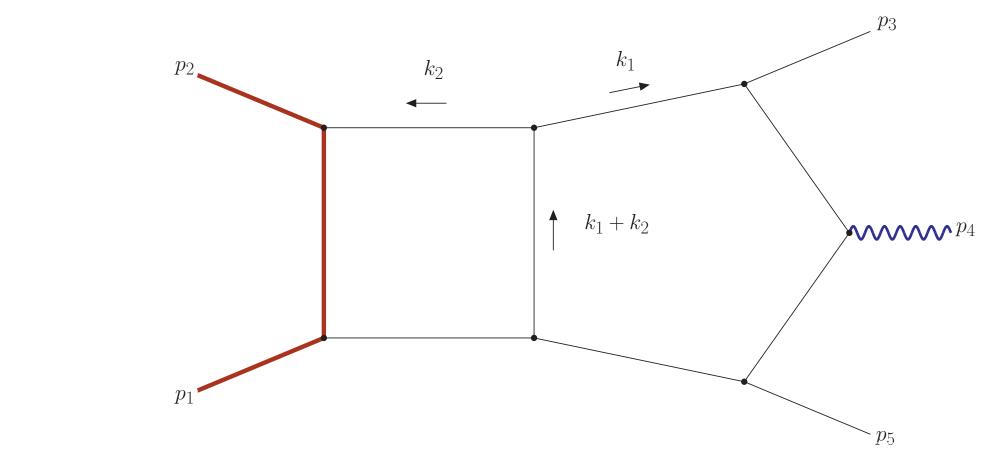
- Sectors: same non-negative exponents
- Top sector: maximum number of non-negative exponents
- Amplitude calculations: express $k_i \cdot p_j$ and $k_i \cdot k_j$ in terms of propagators
 - \implies Beyond one-loop we need irreducible scalar products (ISPs). Here: 3 ISPs







ttWintegral families



Family F_2 : 122 MIs

Family F_3 : 131 MIs

IBPs and reduction to Master Integrals

• Feynman integrals satisfy linear relations: integration by part identities (IBPs) [Chetyrkin, Tkachov '81]

$$0 = \int d^{d}k_{1}d^{d}k_{2} \frac{\partial}{\partial k_{l}^{\mu}} \frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{11}^{a_{11}}}, \quad v^{\mu} \in \{k_{j}^{\mu}, p_{j}^{\mu}\}$$
grals
$$(\vec{x}; \varepsilon)G_{\vec{a}_{k}}(\vec{x}; \varepsilon) = 0 \Longrightarrow G_{\vec{a}}(\vec{x}; \varepsilon) = \sum_{j} c_{\vec{a},j}(\vec{x}; \varepsilon) I_{j}(\vec{x}; \varepsilon)$$
Master Integr
(MIs) $\vec{I}(\vec{x})$

 \bigcirc Reduction to master

$$0 = \int d^{d}k_{1}d^{d}k_{2} \frac{\partial}{\partial k_{l}^{\mu}} \frac{v^{\mu}}{D_{1}^{a_{1}} \cdots D_{11}^{a_{11}}}, \quad v^{\mu} \in \{k_{j}^{\mu}, p_{j}^{\mu}\}$$

er integrals
$$\sum_{\vec{a}_{k}} c_{\vec{a}_{k}}(\vec{x}; \varepsilon) G_{\vec{a}_{k}}(\vec{x}; \varepsilon) = 0 \Longrightarrow G_{\vec{a}}(\vec{x}; \varepsilon) = \sum_{j} c_{\vec{a},j}(\vec{x}; \varepsilon) I_{j}(\vec{x}; \varepsilon)$$

Master Integrals
(MIs) $\vec{I}(\vec{x})$

• Laporta algorithm: IBPs generated for some seeding [Laporta 2000]

• Finite Fields techniques [von Manteuffel, Schabinger 2014; Peraro 2016] to tackle algebraic complexity

of IBPs

• NeatIBP [Wu et al. 2023] and FiniteFlow [Peraro 2019] to generate and solve an optimised system

Method of differential equations

[Kotikov '91; Bern, Dixon, Kosower '94; Gehrmann, Remiddi 2000]

Using IBPs we can construct linear differential equations (DEs) for the MIs

$$\Longrightarrow \partial_{\xi} \vec{I}(\vec{x})$$

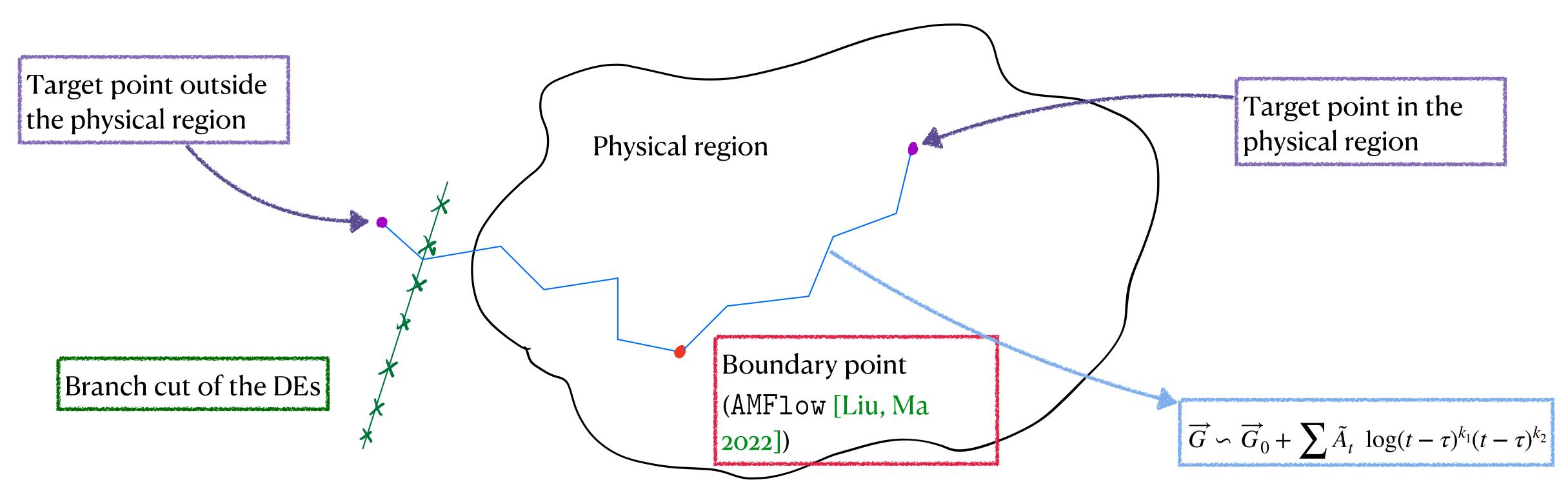
- Many strategies to solve the differential equation. Our choice: semi-numerical approach using DiffExp [Hidding 2020]
 - Suitable for very general problems
 - The implementation supports only rational functions and simple square roots

 $\forall \xi \in \vec{x} : \quad \partial_{\xi} I_i(\vec{x};\varepsilon) = \sum_{\vec{a}} c_{i,\vec{a}}(\vec{x};\varepsilon) G_{\vec{a}}(\vec{x};\varepsilon)$ $\implies \partial_{\xi} \vec{I}(\vec{x};\varepsilon) = B_{\xi}(\vec{x};\varepsilon) \cdot \vec{I}(\vec{x};\varepsilon)$ **IBP** reduction

11

Semi-numerical evaluation

• Generalised series expansion method [Moriello 2019]: approximate the solution in terms of logs along the integration path



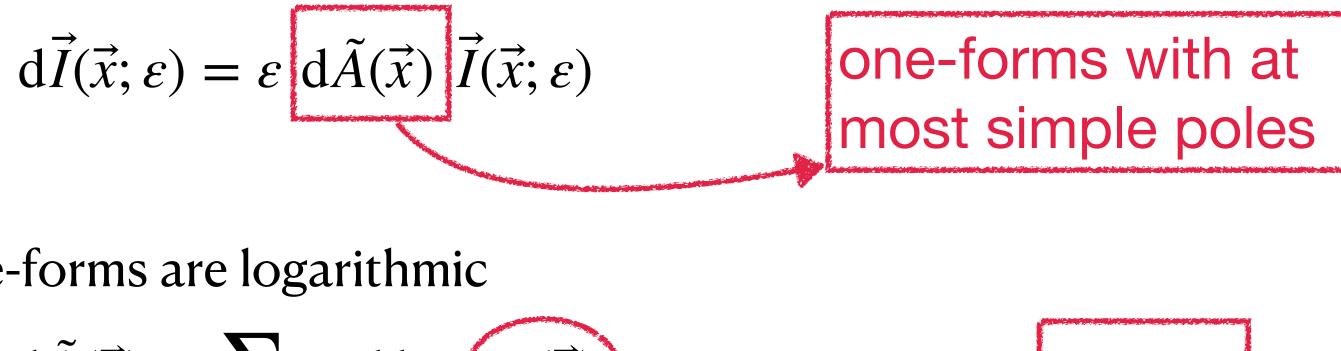
• Work in the physical region: no analytic continuation needed!

What is a good choice of basis of MIs?

The basis of MIs is not unique. A good choice of basis can greatly simplify the DEs

• [Henn 2014]: DEs in canonical form (no general algorithm)

- In the best understood cases the one-forms are logarithmic $d\tilde{A}(\vec{x}) = \sum_{i} a_i \, d\log(W_i(\vec{x}))$
 - *\varepsilon* dependence factorises: solution at each order depends only on previous order
 - amplitude
 - Well-established techniques to handle the solution of the DEs



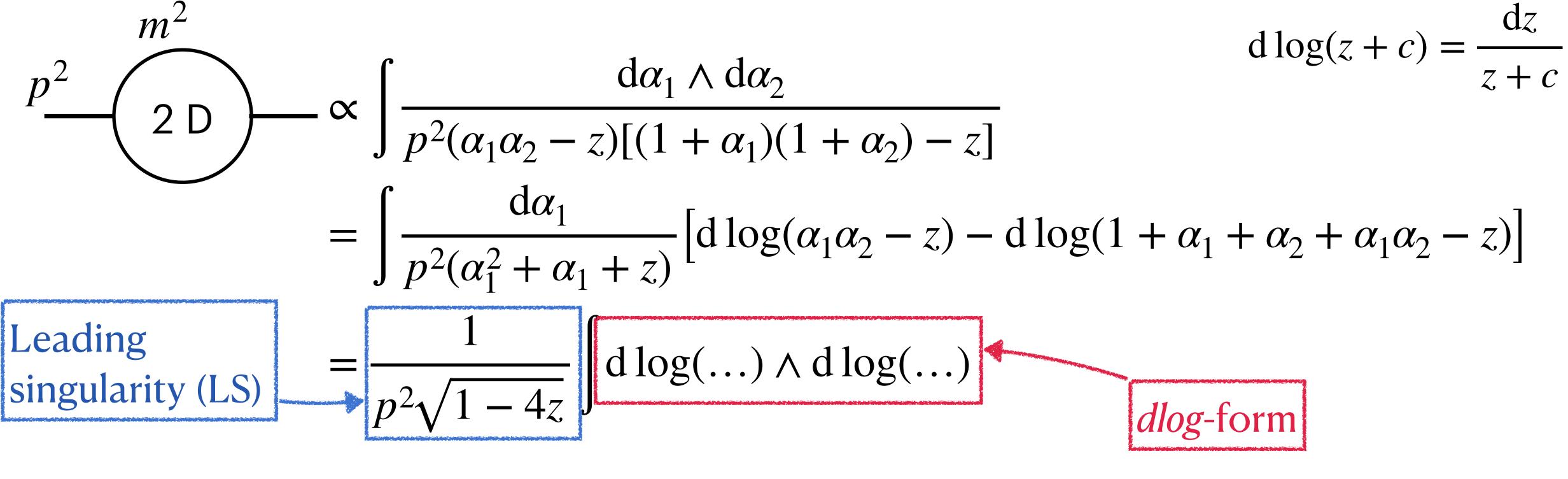
Full control over linear relations through iterated integrals representation of the solution \implies Construction of a minimal basis of special functions, which simplifies the representation of the

Letters

How do we construct a canonical basis?

Cachazo, Trnka 2012] **Dlog-integrands and leading singularities**

• Conjecture: integrals with a loop-integrand with at most simple poles and a constant leading singularity are good MIs



• Commonly: rational functions and simple square roots

15

Beyond the *dlog*-case: elliptic integrals

Ouring the computation of the leading singularity, we can also bump into an elliptic curve

$$\int \frac{\mathrm{d}z}{\sqrt{\mathscr{P}_4(z)}} \wedge \mathrm{d}\log(\ldots), \qquad \mathscr{P}_4(z) = (z - a_1)(z - a_2)(z - a_3)(z - a_4)$$

• The leading singularity contains elliptic functions $\int \frac{dz}{\sqrt{\mathcal{P}_4(z)}} \propto K(.$

• Transcendental functions are needed to put the differential equation in canonical form

- Progress on general strategy in recent years (see e.g. [Görges et al. 2023])
- Still no general method to efficiently evaluate these functions

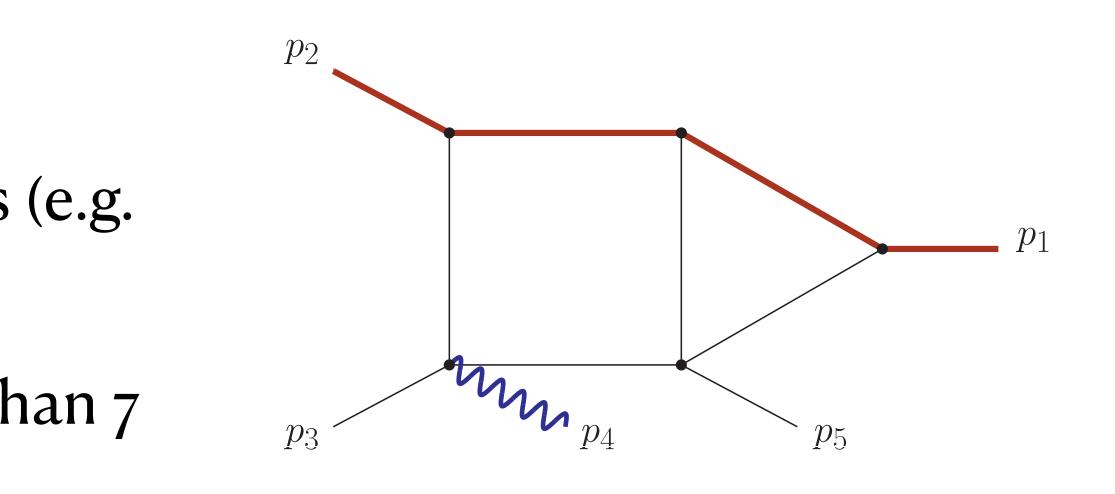
elliptic functions $\int \frac{dz}{\sqrt{\mathcal{P}_4(z)}} \propto K(...)$ Elliptic integral of the first kind

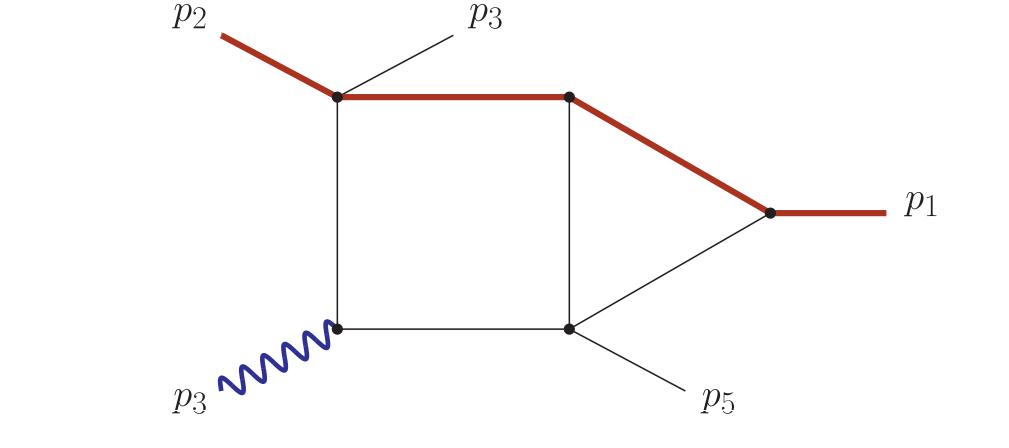
The "simple" $t\bar{t}W$ elliptic curves

- Comparable with known elliptic curves (e.g. [Badger et al. 2024])
- 4-point kinematics \Rightarrow depend on less than 7 variables
- 3 MIs for each sector
- Elliptic curve of the form

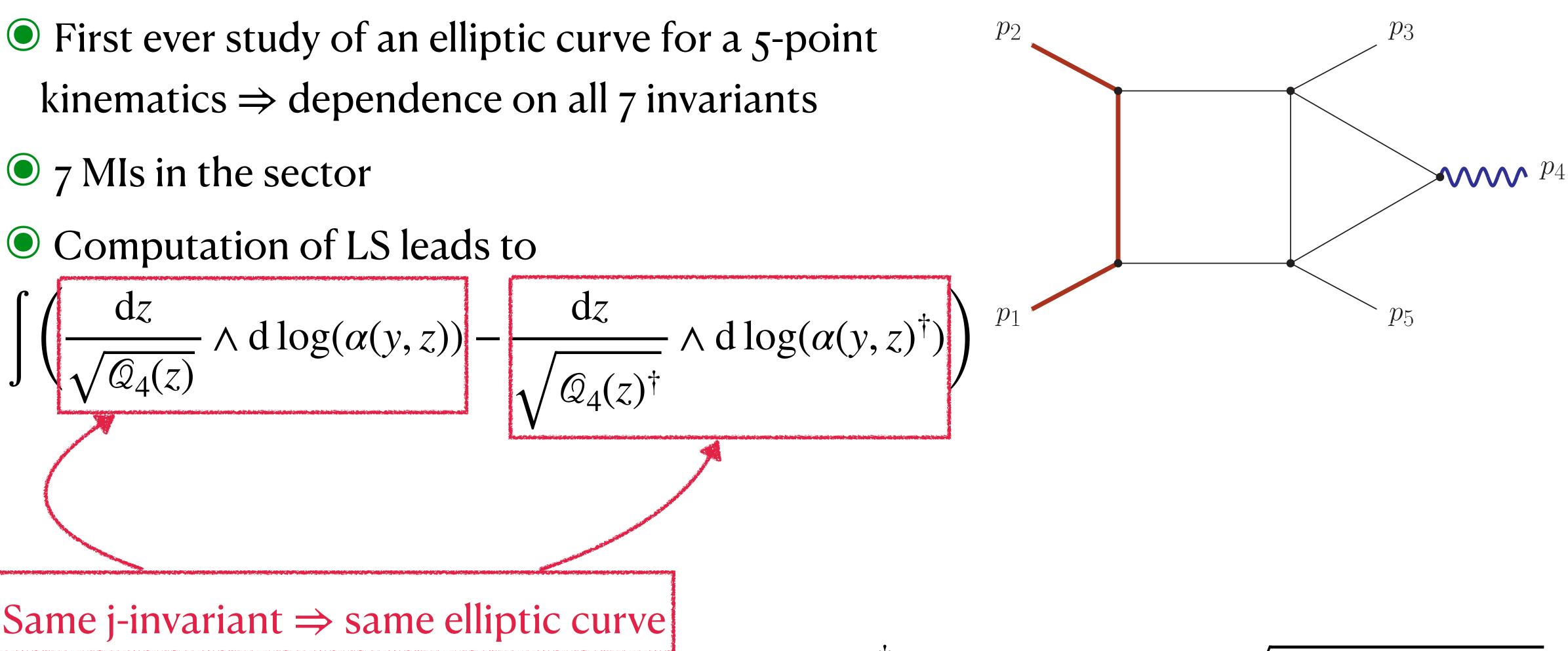
$$\mathcal{P}_{4}(z) = (z - m_{t}^{2})(z - 3m_{t}^{2})\mathcal{P}_{2}(z)$$

• The curves are disctinct, as we checked by computing the j-invariant





The "monster" *t*t Welliptic curve



 $f^{\dagger} \equiv f|_{r_1 \to -r_1}, \quad r_1 = \sqrt{G(p_1, p_2, p_3, p_4)}$

Algebraic complexity of the monster curve

- $\mathcal{Q}_4(z)$ has degree 4 in z and degree 14 in \vec{x} , involves r_1 and 2787 terms
- Obscriminant of the elliptic curve contains a degree 14 polynomial in \vec{x}
 - 2547 terms
 - File size is 94 KB
 - Appears in the denominators of the DEs \implies one of the singularities of the solution
- $\odot \epsilon$ -factorised DEs challenging even with known techniques

How we deal with elliptics

Aims: obtain a good basis compatible with DiffExp

• Simple ε -dependence

- No ε -poles in the differential equation
- Maximum degree as low as possible (2 in this case)
- Elliptic MIs finite
 - Poles of the amplitude dictated by tree-level and 1-loop: no elliptic functions • Allows to apply the method of [Badger et al. 2025] to construct a basis of special
 - functions up to the finite part

We allow for a spurious degree-9 polynomial in the denominators

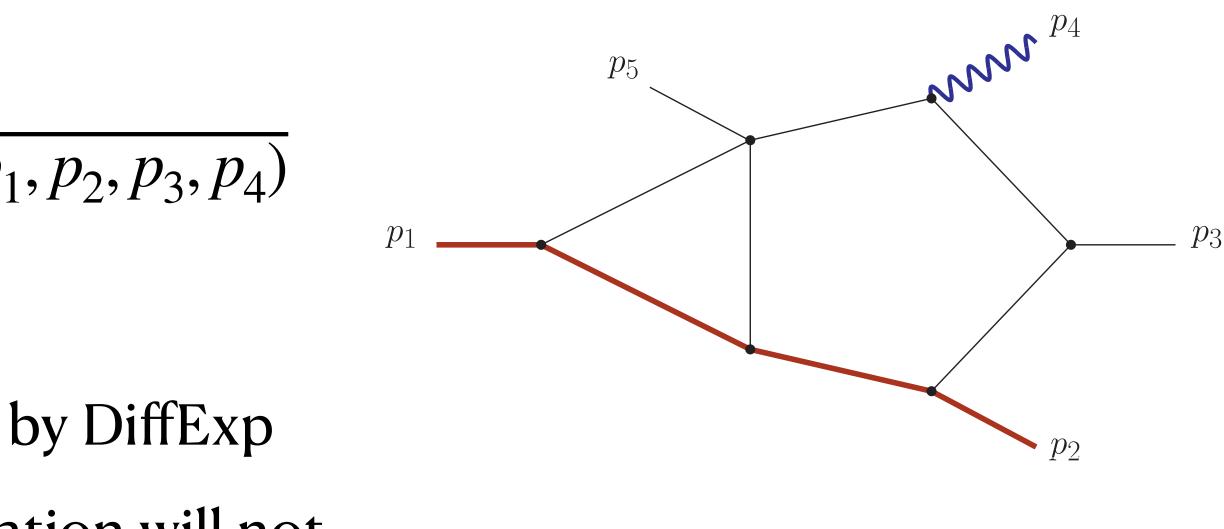
Apparent trade-off between the above criteria and the algebraic complexity:

Beyond (?) the *dlog*-case: nested square roots

• For $t\bar{t}H$ [Febres Cordero et al. 2024] and $t\bar{t}j$ [Badger et al. 2024] leading singularities involving nested square roots were observed. This is the case also here

$$NR_{\pm} = \sqrt{q_1(\vec{x}) \pm q_2(\vec{x})r_1}, \quad r_1 = \sqrt{G(p_1)}$$
$$NR_{\pm} \xrightarrow{r_1 \to -r_1} NR_{\pm}$$

- Nested square roots are not supported by DiffExp
- Due to the elliptics, the differential equation will not be ε -factorised anyway
- \implies keep the differential equation linear in ε



Final representation of the differential equation

• We selected a basis

- ε factorised as much as possible
- Linear in *ɛ* for the nested square roc sectors
- Elliptic integrals finite

• Write connection matrix in terms of independent one-forms

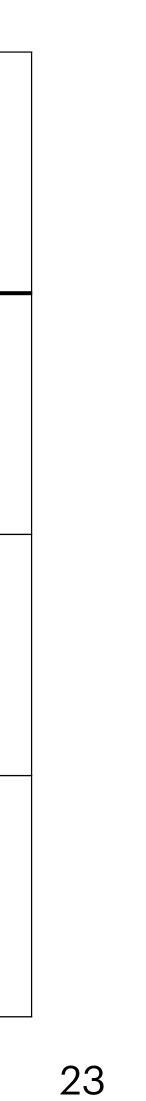
 $d\vec{I}(\vec{x};\varepsilon) = dA^{(F)}(\vec{x};\varepsilon) \cdot \vec{I}(\vec{x};\varepsilon), \qquad dA^{(F)}(\vec{x};\varepsilon)$

• Linear in ε for the nested square root sectors and at most quadratic in the elliptic

$$\varepsilon) = \sum_{k=0}^{2} \varepsilon^{k} \left[\sum_{\alpha} c_{k\alpha}^{(F)} d\log(W_{\alpha}(\vec{x})) + \sum_{\beta} d_{k\beta}^{(F)} \omega_{\beta}(\vec{x}) \right]$$

Some numbers...

	Nested square root sectors	"Simple" elliptic sectors	Monster elliptic sector	# square roots	# letters	# one-forms	Dimension one-forms file
Family 1	Yes	2	No	8	101	119	6.7 MB
Family 2	No	1	Yes	11	122	84	311 MB
Family 3	No	1	Yes	12	137	96	316.5 MB



Numerical checks

• DiffExp implementation with in-house path-parametrisation

• Checked against AMFlow at 10 physical phase-space points, to 25 digits accuracy

• We verified that we can integrate between any of these 10 points with DiffExp

Summary and Outlook

- Basis and differential equation for all the integral families relevant for $t\bar{t}W$ production at 2-loop at leading color
- Addressed complications arising from nested square roots and elliptic integrals
- Semi-numerical solution using DiffExp
- Next steps
 - 2-loop amplitude 1.
 - 2. ε -factorised differential equation

Summary and Outlook

- Basis and differential equation for all the integral families relevant for $t\bar{t}W$ production at 2-loop at leading color
- Addressed complications arising from nested square roots and elliptic integrals
- Semi-numerical solution using DiffExp
- Next steps
 - 2-loop amplitude
 - 2. ε -factorised differential equation

Thank you!

Backup slides

Definitions for elliptic curves

• Cross ratio

• Elliptic integral of the first kind

• Periods of the elliptic curve

$$\omega_1 = 2c_4 \int_{a_2}^{a_3} \frac{dz}{y} = 2K(\lambda), \quad \omega_2 = 2c_4 \int_{a_1}^{a_2} \frac{dz}{y} = 2iK(1-\lambda),$$

with $c_4 = \frac{1}{2}\sqrt{(a_1 - a_3)(a_2 - a_4)}$

j = 256

$$\lambda = \frac{(a_1 - a_4)(a_2 - a_3)}{(a_1 - a_3)(a_2 - a_4)}$$

$$K(\lambda) = \int_{0}^{1} \frac{dt}{\sqrt{(1 - t^2)(1 - \lambda t^2)}}$$

$$\lambda^2(1-\lambda)^2$$

