

Jonathan Ronca

Loop Integrals Numerical **Evaluation** with LINE

In collaboration with: Renato Maria Prisco, Francesco Tramontano Based on: arXiv:2501.01943

Scattering Omplitudes Liverpool

Dipartimento di Fisica Galileo Galilei

26 Mar 2025

Motivation

Fermi $I(\mathbf{s}, \epsilon) = \int_{k_1, \dots, k_n} I(\mathbf{s}, \epsilon) = \int_{k_1, \dots, k_n} I(\mathbf{s},$

MonteCarlo Integration Methods

- Sector decomposition
- Tropical Integration
- Loop-Tree duality
- ...

pySecDec Lotty FIESTA FeynTrop

- Evaluating integrals in a single point
- No need of additional inputs
- Relatively heavy computational needs

AMFlow implements series expansion methods with automated boundary constants

$$\prod_{\alpha=0}^{1} \frac{1}{D_{\alpha}^{\nu_{\alpha}}}, \quad D_{\alpha} = q_{\alpha}^{2} - m_{\alpha}^{2} + i\varepsilon$$

- Solutions via series expansions
- DEs and boundary conditions required
- Computationally efficient

Motivation

Auxiliary mass flow (AMFlow)

[Liu,Ma:2201.11669]

- Introducing a mass parameter η into propagators
- Numerical IBPs + DE system depending on η only
- Automatic Boundary condition at $\eta \sim \infty$
- Propagating boundaries to $\eta \rightarrow 0$

Series expansion methods (DiffExp, SeaSyde, LINE) [Hidding:2006.05510] [Armadillo,Bonciani,Devoto,Rana,Vicini:2205.03345] [Prisco, JR, Tramontano: to appear]

Sector Decomposition (SecDec, pySecDec)

- Analytical IBPs + Differential Equation system
- Boundary condition as input
- Propagating boundary to input PS-points
- Feynman parametrization
- Splitting integration domain
- End-point subtraction of singularities and expansion
- contour deformation + expansion-by-region
- MonteCarlo integration of finite integrals

[Heinrich, Jones, Kerner, Magerya, Olsson, Schlenk: 2305.19768]

Tropical integration (FeynTrop)

[Borinski, Munch, Tellander: 2302.08955]

- Tropical approximation of Symanzik Polynomial
- MonteCarlo integration improved with tropical sampling
- Improving sampling by geometrical insights

Motivation

AMFlow: DEs w.r.t. an auxiliary mass DiffExp: DEs via series expansions SeaSyde: DEs + complex masses

We propose a novel tool: LINE (Loop Integrals Numerical Evaluation)

- Low-level language
- Open source
- Suitable for clusters

Codes implementing the DE method via series expansions

Mathematica packages

- Multi-purpose
- High-level
- Licenses issues

C Implementation

Solution by series expansion

Block-Triangular structure

Differential Equations for Feynman Integral

$$\frac{d}{ds_{ij}}\bar{I}(\mathbf{s},\epsilon) = A_{ij}(\mathbf{s},\epsilon)\bar{I}(\mathbf{s},\epsilon), \quad \bar{I}(\mathbf{s}_i,\epsilon) = \bar{I}_0$$

Parametrizing path w.r.t. the line parameter η

$$\mathbf{s} = \mathbf{s}(\eta)$$

Differential Equations w.r.t the line parameter η

$$\frac{d}{d\eta}\bar{I}(\eta,\epsilon) = A(\eta,\epsilon)\bar{I}(\eta,\epsilon)$$

Rational functions of polynomials of η and ϵ

Solution by series expansion

 $\frac{d}{d\eta}\bar{I}(\eta) = A(\eta)\bar{I}(\eta)$

Normalized Fuchsian form

Solutions admit at most **regular-singular** points

 $T(\eta)$ can be found **algorithmically** Automated method from [Lee '15, <u>arxiv:1411.0911</u>]

At most simple poles

Then $\begin{cases} \bar{I}(\eta) = T(\eta)\bar{I}'(\eta) \\ A'(\eta) = T^{-1}(\eta)A(\eta)T(\eta) - T^{-1}(\eta)\frac{d}{d\eta}T(\eta) \end{cases}$

Typical matrix element

2*(-4+d)^2*(10-7*d+d^2)*s^9*t^5*(3*s+4*t)*(3*(-3+d)*s+(-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+d^2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+32724*d-16+5*d)*t)-m2*s^7*t^4*(8-6*d+16+2)*(2*(-4150+3205*d-805*d^2+66*d^3)*s^4+(-42520+3205*d^2+66*d^3)*t)-m2*s^3+(16+3205*d^2+66*d^3)*t)-m2*s^3+(16+326*d^2+66*d^3)*t)-m2*s^3+(16+326*d^2+66*d^3)*t)-m2*s^3+(16+326*d^2+66*d^3)*t)-m2*s^3+(16+326*d^2+66*d^3)*t)-m2*s^3+(16+32*d^2+66*d^2+66*d^3)*t)-m2*s^3+(16+32*d^2+66*d^3+6*d^3+6*d^3+6*d^3)*t)-m2*s^3+(16+32*d^2+66*d^3+6*d^3+6*d^3+6*d^3)*t)-m2*s^3+(16+32*d^3+6*d^3+6*d^3+6*d^3+6*d^3)*t)-m2*s^3+(16+32*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d^3+6*d 8219*d^2+675*d^3)*s^3*t+2*(-35500+27140*d-6743*d^2+532*d^3+3*d^4)*s^2*t^2+4*(-9914+7471*d-1782*d^2+117*d^3+4*d^4)*s*t^3+8*(-50-149*d+148*d^2-148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d^2)*s*t^3+8*(-50-149*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148*d+148 43*d^3+4*d^4)*t^4)+262144*(-56+58*d-19*d^2+2*d^3)*m2^10*(s+t)*(4*(20-9*d+d^2)*s^5+(535-272*d+33*d^2)*s^4*t+(1265-753*d+135*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3*t^2+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d+309*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^2-7*d^2-7*d^3)*s^3+(1797-1281*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2-7*d^2 25*d^3)*s^2*t^3-2*(-638+525*d-144*d^2+13*d^3)*s*t^4+4*(71-70*d+21*d^2-2*d^3)*t^5)+4*(-2+d)*m2^2*s^6*t^3*((7640-6653*d+2015*d^2-243*d^3+9*d^4)*s^5+4*(33430-10)*s^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+10*d^2+ 33161*d+12130*d^2-1942*d^3+115*d^4)*s^4*t+(444340-442838*d+161309*d^2-24828*d^3+1165*d^4+36*d^5)*s^3*t^2+2*(249308-242356*d+83109*d^2-1942*d^3+1165*d^4+36*d^5)*s^3*t^2+2*(249308-242356*d+83109*d^2-1942*d^3+1165*d^4+36*d^5)*s^3*t^2+2*(249308-242356*d+83109*d^2-1942*d^3+1165*d^4+36*d^5)*s^3*t^2+2*(249308-242356*d+83109*d^2-1942*d^3+1165*d^4+36*d^5)*s^3*t^2+2*(249308-242356*d+83109*d^2-1942*d^3+1165*d^4+36*d^5)*s^3*t^2+2*(249308-242356*d+83109*d^2-1942*d^3+1165*d^4+36*d^5)*s^3*t^2+2*(249308-242356*d+83109*d^2-1942*d^3+1165*d^4+36*d^5)*s^3*t^2+2*(249308-242356*d+83109*d^2-1942*d^3+1165*d^4+36*d^5)*s^3*t^2+2*(249308-242356*d+83109*d^2-1942*d^3+1165*d^3+1165*d^4+36*d^5)*s^3*t^2+2*(249308-242356*d+83109*d^2-19 10606*d^3+2*d^4+67*d^5)*s^2*t^3+2*(69640-49054*d+2605*d^2+5514*d^3-1535*d^4+122*d^5)*s*t^4+4*(-1048+7970*d-7887*d^2+3094*d^3-545*d^4+36*d^5)*t^5)+16*(-2+d) *m2^3*s^5*t^2*(6*(3100-3465*d+1444*d^2-265*d^3+18*d^4)*s^6+(68620-79124*d+33975*d^2-6404*d^3+445*d^4)*s^5*t+(-29500+1205*d+15979*d^2-7473*d^3+1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^5-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^2-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^4-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-1253*d^5-72*d^5)*s^4*t^2-3*(69988-44332*d-1513*d^2+6687*d^3-1654*d^4+124*d^5)*s^3*t^3+(77798-240621*d+204195*d^2-74961*d^3+12691*d^4-814*d^5)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*d-10)*s^2*t^4-8*(-35409+56641*t^4-8*(-35409+56641*t^4-8*(-35409+56641*t^4-10)*s^2*t^4-8*(-3569+56641*t^4-8*(-3569+56641 35712*d^2+11089*d^3-1695*d^4+102*d^5)*s*t^5-4*(-8742+20263*d-15499*d^2+5397*d^3-887*d^4+56*d^5)*t^6)-65536*m2^9*(2*(-7760+11692*d-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^2+1952*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d*a-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d*a-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3-6838*d^3 881296+1460192*d-974010*d^2+335937*d^3-63289*d^4+6178*d^5-244*d^6)*s^4*t^3+(-1117108+1966668*d-1416163*d^2+536687*d^3-113295*d^4+12661*d^5-586*d^6)*s^3*t^4-2*(425080-786430*d+597375*d^2-239205*d^3+53345*d^4-6287*d^5+306*d^6)*s^2*t^5-4*(75164-145432*d+115125*d^2-47790*d^3+10987*d^4-1328*d^5+66*d^6)*s*t^6-8*(3976-8038*d+6585*d^2-2802*d^3+655*d^4-80*d^5+4*d^6)*t^7)-64*m2^4*s^4*t*((-27440+43838*d-27405*d^2+8407*d^3-1267*d^4+75*d^5)*s^7+2*(-137060+215942*d-14) 132876*d^2+40069*d^3-5932*d^4+345*d^5)*s^6*t+(-830000+1325770*d-834559*d^2+262061*d^3-42123*d^4+3063*d^5-60*d^6)*s^5*t^2+(-1369568+2316650*d-1582833* d^2+560776* d^3-108795* d^4+10962* d^5-448* d^6)*s^4* t^3-2* (1107084-1971420* d+1439151* d^2-554278* d^3+119240* d^4-13619* d^5+646* d^6)*s^3* t^4+ (-2689240+4874294*d-3633815*d^2+1433455*d^3-316573*d^4+37173*d^5-1814*d^6)*s^2*t^5-2*(613448-1148204*d+884122*d^2-359659*d^3+81686*d^4-9831*d^5+490*d^6)*s*t^6-4*(25760-49326*d+38467*d^2-15660*d^3+3517*d^4-414*d^5+20*d^6)*t^7)+16384*m2^8*(4*(-3340+5218*d-3180*d^2+949*d^3-139*d^4+8*d^5)*s^8+(-168680+260686*d-156935*d^2+46219*d^3-6677*d^4+379*d^5)*s^7*t+(-776760+1215342*d-744523*d^2+225335*d^3-34281*d^4+2243*d^5-28*d^6)*s^6*t^2+(-1750824+2832518*d-1215342*d-744523*d^2+225335*d^3-34281*d^4+2243*d^5-28*d^6)*s^6*t^2+(-1750824+2832518*d-1215342*d-744523*d^2+225335*d^3-34281*d^4+2243*d^5-28*d^6)*s^6*t^2+(-1750824+2832518*d-1215342*d-744523*d^2+225335*d^3-34281*d^4+2243*d^5-28*d^6)*s^6*t^2+(-1750824+2832518*d-1215342*d-744523*d^2+225335*d^3-34281*d^4+2243*d^5-28*d^6)*s^6*t^2+(-1750824+2832518*d-1215342*d-744523*d^2+225335*d^3-34281*d^4+2243*d^5-28*d^6)*s^6*t^2+(-1750824+2832518*d-1215342*d-744523*d^2+225335*d^3-34281*d^4+2243*d^5-28*d^6)*s^6*t^2+(-1750824+2832518*d-1215342*d-744523*d^2+225335*d^3-34281*d^4+2243*d^5-28*d^6)*s^6*t^2+(-1750824+2832518*d-1215342*d-744523*d^2+225335*d^3-34281*d^5+2243*d^5-28*d^6)*s^6*t^2+(-1750824+2832518*d-1215342*d-744523*d^2+225335*d^3-34281*d^5+2243*d^5-28*d^6)*s^6*t^2+(-1750824+2832518*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215335*d^3-34281*d^3+2243*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-1215342*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153*d-12153 2284780*d+1704803*d^2-671531*d^3+147648*d^4-17202*d^5+830*d^6)*s^3*t^5+(-1357816+2585562*d-2022013*d^2+832937*d^3-190839*d^4+23071*d^5-1150*d^6)*s^2*t^6-2*(142736-285392*d+232778*d^2-99235*d^3+23358*d^4-2883*d^5+146*d^6)*s*t^7-4*(3976-8038*d+6585*d^2-2802*d^3+655*d^4-80*d^5+4*d^6)*t^8)+256*m2^5*s^3*(2*(-3400+5400*d-3354*d^2+1022*d^3-153*d^4+9*d^5)*s^8+(-119920+186864*d-113586*d^2+33817*d^3-4943*d^4+284*d^5)*s^7*t+(-644040+1006058*d-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^2+185243*d^3-614765*d^3-614765*d^2+185243*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^2+185243*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-614765*d^3-6145*d^3-6145*d^3-6145*d^3-61405*d^3-61465*d^3-61465*d^3-6145*d^3-6145*d^3-6145*d^3-6145*d^3-6145*d^ 27921*d^4+1779*d^5-18*d^6)*s^6*t^2+(-1660112+2669004*d-1703084*d^2+549991*d^3-93801*d^4+7826*d^5-236*d^6)*s^5*t^3-2*(1458844-2455646*d+1670234*d^2-1660112+2669004*d-1703084*d^2+549991*d^3-93801*d^4+7826*d^5-236*d^6)*s^5*t^3-2*(1458844-2455646*d+1670234*d^2-1660112+2669004*d-1703084*d^2+549991*d^3-93801*d^4+7826*d^5-236*d^6)*s^5*t^3-2*(1458844-2455646*d+1670234*d^2-1660112+2669004*d-1703084*d^2+549991*d^3-93801*d^4+7826*d^5-236*d^6)*s^5*t^3-2*(1458844-2455646*d+1670234*d^2-1660112+2669004*d-1703084*d^2+549991*d^3-93801*d^4+7826*d^5-236*d^6)*s^5*t^3-2*(1458844-2455646*d+1670234*d^2-1660112+2669004*d-1703084*d^2+549991*d^3-93801*d^4+7826*d^5-236*d^6)*s^5*t^3-2*(1458844-2455646*d+1670234*d^2-1660112+2669004*d-1703084*d^2-1660112+2669004*d-1703084*d^2-1660112+2669004*d-1703084*d^2+549991*d^3-93801*d^4+7826*d^5-236*d^6)*s^5*t^3-2*(1458844-2455646*d+1670234*d^2-1660112+2669004*d-1703084*d^2-1660112+2669004*d-1703084*d^2-1660112+2669004*d-1703084*d^2+549991*d^3-93801*d^4+7826*d^5-236*d^6)*s^5*t^3-2*(1458844-2455646*d+1670234*d^2-16600112+2669004*d-1703084*d^2-1660112+2669004*d-1703084*d^3-93801*d^4+1670234*d^2-1660112+2669004*d-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669004*d^2-1660112+2669 590065*d^3+114572*d^4-11626*d^5+483*d^6)*s^4*t^4+(-3834288+6658564*d-4715934*d^2+1753646*d^3-362739*d^4+39719*d^5-1804*d^6)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^3*t^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(1286796-1804*d^2)*s^5-2*(128676-1804*d^2)*s^5-2*(128676-1804*d^2)*s^5-2*(128676-1804*d^2)*s^5-2*(128676-1804*d^2)*s^5-2*(128676-1804*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s^5-2*(128676*d^2)*s 2271580* d+1638513*d^2-621235*d^3+131070*d^4-14633*d^5+677*d^6)*s^2*t^6-4*(108724-179486*d+117200*d^2-38339*d^3+6476*d^4-507*d^5+12*d^6)*s*t^7+8*(-680-6274*d+11075*d^2-7130*d^3+2215*d^4-336*d^5+20*d^6)*t^8)+4096*m2^7*s*(4*(-2180+3146*d-1742*d^2+465*d^3-60*d^4+3*d^5)*s^8+2*(-14200+20880*d-11748*d^2+3163*d^3-60*d^4+3*d^5)*s^8+2*(-14200+20880*d-11748*d^2+3163*d^3-60*d^4+3*d^5)*s^8+2*(-14200+20880*d-11748*d^2+3163*d^3-60*d^4+3*d^5)*s^8+2*(-14200+20880*d-11748*d^2+3163*d^3-60*d^3-60*d^4+3*d^5)*s^8+2*(-14200+20880*d-11748*d^2+3163*d^3-60*d^3-60*d^4+3*d^5)*s^8+2*(-14200+20880*d-11748*d^2+3163*d^3-60*d^3-60*d^4+3*d^5)*s^8+2*(-14200+20880*d-11748*d^2+3163*d^3-60*d^3-60*d^4+3*d^5)*s^8+2*(-14200+20880*d-11748*d^2+3163*d^3-60*d^3-60*d^4+3*d^5)*s^8+2*(-14200+20880*d-11748*d^2+3163*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-60*d^3-407*d^4+20*d^5)*s^7*t+(203300-309420*d+181227*d^2-50405*d^3+6257*d^4-155*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+40814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+40814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+40814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+40814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+40814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+40814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+40814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+40814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+40814*d^4-2257*d^5-20*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+60814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+40814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+60814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+60814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+60814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+60814*d^4-2257*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+60844*d^2-28685*d^5-20*d^5-20*d^6)*s^6*t^2+(1010576-1573724*d+954516*d^2-282685*d^3+60844*d^2-28685*d^5-20*d^5-20*d^5-20*d^6)*s^6+t^2+(1010576-1573724*d+954516*d^2-28685*d^3+6084*d^2-28685*d^3+6084*d^2-2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+288*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+2868*d^2+286*d^2+2868*d^2+2868*d^2+2868*d^2+286*d^2+2868*d^2+2868*d^2+286*d^2+286*d^2+2868*d^2+2868*d^2+286*d^2+2868*d^2+286*d^2+286*d^2+286*d^2+286*d^2+286*d^ 8*d^6)*s^5*t^3+2*(986890-1627267*d+1075037*d^2-364353*d^3+66629*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^5+226*d^6)*s^4*t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^4-6194*d^5+226*d^6)*s^4+t^4+(2712280-4827004*d+3520554*d^2-1353979*d^3+290645*d^4-6194*d^4-6194*d^5+226*d^6)*s^4+t^4+(2712280-4827004*d+3520554*d^2-13539*d^2+1296*d^4-6194*d^4-6194*d^5+296*d^4-6194*d^4-6194*d^4-6194*d^4-6194*d^5+296*d^4-6194*d^5+296*d^4-6194*d^4-6194*d^4-6194*d^5+296*d^4-6194*d^5+296*d^4-6194*d^5+296*d^5+296*d^5+296*d^4-6194*d^5+296*d^5+296*d^4-6194*d^5+296*d^4-6194*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d^5+296*d 33096*d^5+1564*d^6)*s^3*t^5+(2270132-4284872*d+3330633*d^2-1368343*d^3+313753*d^4-38077*d^5+1910*d^6)*s^2*t^6+16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+79799*d^2-34386*d^3+8206*d^4-16*(48454-97161*d+7979*d^2-34386*d^3+16*(48454-97161*d+7979*d^2-34386*d^3+16*(48454-9716*d^4-346*d^2-34386*d^3+16*(48454-9716*d^2+3486*d^2-3486*d^3+16*(48454-9716*d^2+346*d^2+346*d*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^3+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+346*d^2+ 1029*d^5+53*d^6)*s*t^7+4*(18044-38504*d+33167*d^2-14795*d^3+3617*d^4-461*d^5+24*d^6)*t^8)-1024*m2^6*s^2*(8*(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^2+609*d^3-88*d^4+5*d^5)*s^8+(-2230+3441*d-2069*d^3+3441*d^5)*s^8+(-2230+3441*d-2069*d^3+3441*d^5)*s^8+(-2230+3441*d-2069*d^3+3441*d^5)*s^8+(-2230+3441*d-2069*d^3+3441*d^5)*s^8+(-2230+3441*d-2069*d^3+3441*d^5)*s^8+(-2230+3441*d-2069*d^3+248*d^5)*s^8+(-2230+3441*d-2069*d^3+3441*d^5)*s^8+(-2230+3441*d-2069*d^3+3441*d^5)*s^8+(-2230+3441*d^5)*s^8+(-2230+3441*d-2069*d^3+3441*d^5)*s^8+(-2230+3441*d-2069*d^3+3441*d^5)*s^8+(-2230+3441*d-2069*d^3+3441*d^5)*s^8+(-2230+3441*d-2069*d^3+3441*d^5)*s^8+(-2230+3441*d-2069*d^5+244*d^5)*s^8+(-2230+3441*d^5+244*d^5)*s^8+(-2230+3441*d^5+244*d^5)*s^8+(-2230+3441*d^5+244*d^5+244*d^5)*s^8+(-2230+3441*d^5+244*d^5+244*d^5+244*d^5)*s^8+(-2230+3441*d^5+244*d^5+244*d^5+24*d^5)*s^8+(-2230+3441*d^5+244*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5+24*d^5 166360+254642*d-151519*d^2+44024*d^3-6265*d^4+350*d^5)*s^7*t+(-596680+937046*d-578117*d^2+177600*d^3-27977*d^4+2018*d^5-42*d^6)*s^6*t^2+(-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d-1084336+1798006*d 1197961* d^2+411803* d^3-77217*d^4+7505*d^5-296*d^6)*s^5*t^3-2*(661356-1160694*d+833066*d^2-314989*d^3+66520*d^4-7468*d^5+349*d^6)*s^4*t^4+(-775816+1362616*d-978084*d^2+369317*d^3-77690*d^4+8657*d^5-400*d^6)*s^3*t^5+2*(310184-624798*d+520701*d^2-229750*d^3+56511*d^4-7331*d^5+391*d^6)*s^2*t^6+2*(351912-10)*d^2-229750*d^3+56511*d^4-7331*d^5+391*d^6)*s^2*t^6+2*(351912-10)*d^2-229750*d^3+56511*d^4-7331*d^5+391*d^6)*s^2*t^6+2*(351912-10)*d^2-229750*d^3+56511*d^4-7331*d^5+391*d^6)*s^2*t^6+2*(351912-10)*d^2-229750*d^3+56511*d^4-7331*d^5+391*d^6)*s^2*t^6+2*(351912-10)*d^2-229750*d^3+56511*d^4-7331*d^5+391*d^6)*s^2*t^6+2*(351912-10)*d^5+391*d^5+391*d^5+391*d^6)*s^2*t^6+2*(351912-10)*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d^5+391*d 727320*d+616792*d^2-274703*d^3+67760*d^4-8775*d^5+466*d^6)*s*t^7+4*(23880-58276*d+55626*d^2-26933*d^3+7046*d^4-951*d^5+52*d^6)*t^8)

 $\sim O(10) \text{ MB}$

LINE implements a **dedicated parser**

- No needs for general purpose tools
- Expressions trees via linked lists
- Operations via lists management

What expressions we need to manipulate?

$$roots = \{\eta_0, \eta_1, \dots, \eta_N\}$$

$$p(\eta) \eta^2 (\eta - \eta_6)^2 = \{a'_0, a'_1\}$$

Manipulating lists of coefficients

$$\frac{p(\eta)}{\eta(\eta-\eta_2)^4(\eta-\eta_{24})^2} + \frac{q(\eta)}{\eta^3(\eta-\eta_2)(\eta-\eta_{24})^2}$$

roots = $\{0.0000e0, 4.2000e1, \dots, 1.0000e1\}$

Labelling each unique roots

Analytic continuation

$$\bar{I}(\eta) = \sum_{\lambda \in S} \eta^{\lambda} \sum_{l=0}^{L_{\lambda}} \log^{l} \eta \sum_{k=0}^{\infty} c_{\lambda,l,k} \eta^{k}$$

Logarithms introduce **branch cuts**

Parametrizing invariants

$$\begin{cases}
s_1 = (s_{1f} - s_{1i}) \eta + s_{1f} \\
\vdots \\
m_1^2 = (m_{1f}^2 - m_{1i}^2) \eta + m_{1f}^2 \\
\vdots
\end{cases}$$

Feynman prescription

In the $z(\eta)$ plain, branch cuts must be approached from the **upper-half** plane

Analytic continuation: fixed masses

$$m_1 + m_2 + \cdots)^2$$

$$\mathbf{s}(\eta) = \begin{cases} s_1 = (s_{1f} - s_{1i}) \eta + s_{1f} \\ \vdots \\ m_1^2 = \text{const} \\ \vdots \end{cases}$$

$$\log(\eta_i) = \log |\eta_i| + i\pi + i2\pi n$$
$$\log(\eta_f) = \log |\eta_f| + i2\pi n$$

$$\log(\eta_i) = \log |\eta_i| - i\pi + i2\pi n$$
$$\log(\eta_f) = \log |\eta_f| + i2\pi n$$

Analytic continuation: varying masses

The $z : \eta \rightarrow z(\eta)$ map preserves orientation

$$\mathbf{s}(\eta) = \begin{cases} s_1 = (s_{1f} - s_{1i}) \eta + s_{1f} \\ \vdots \\ m_1^2 = [(m_{1f} - m_{1i}) \eta + m_{1f}]^2 \\ \vdots \end{cases}$$

$$\log(\eta_i) = \log |\eta_i| - i\pi + i2\pi n$$
$$\log(\eta_f) = \log |\eta_f| + i2\pi n$$

$$\log(\eta_i) = \log |\eta_i| + i\pi + i2\pi n$$
$$\log(\eta_f) = \log |\eta_f| + i2\pi n$$

Boundaries: auxiliary-mass flow

Automated method for boundary conditions

Auxiliary mass flow method

- Fixing numerical kinematics
- Insert auxiliary mass parameter η
- Known boundaries for large η
- Propagating η to 0

Relevant Integrals for boundaries

$$\underbrace{ \left[\begin{array}{c} \Gamma(\nu_{3} - 2 + \epsilon)\Gamma(\nu_{1} + \nu_{2} - 2 + \epsilon) \\ \Gamma(\nu_{3})\Gamma(\nu_{1} + \nu_{2}) \end{array} \right] }_{\nu_{3} - 1} = \left(-1 \right)^{\nu} \left[\begin{array}{c} \Gamma(\nu_{3} - 2 + \epsilon)\Gamma(\nu_{1} + \nu_{2} - 2 + \epsilon) \\ \Gamma(\nu_{3})\Gamma(\nu_{1} + \nu_{2}) \end{array} \right] _{4} F_{3} \left(\begin{array}{c} 2 - \epsilon, \nu_{1}, \nu_{2}, \nu_{1} + \nu_{2} - 2 \\ \frac{\nu_{1} + \nu_{2}}{2}, \frac{\nu_{1} + \nu_{2}}{2} + \frac{1}{2}, 3 - \nu_{3} \end{array} \right) \\ + \frac{\Gamma(2 - \nu_{3} - \epsilon)\Gamma(\nu_{1} + \nu_{3} - 2 + \epsilon)\Gamma(\nu_{2} + \nu_{3} - 2 + \epsilon)\Gamma(\nu + 2\epsilon - 4)}{\Gamma(\nu_{1})\Gamma(\nu_{2})\Gamma(2 - \epsilon)\Gamma(\nu + \nu_{3} - 4 + 2\epsilon)} \\ \times _{4}F_{3} \left(\begin{array}{c} \nu_{3}, \nu_{1} + \nu_{3} - 2 + \epsilon, \nu_{2} + \nu_{3} - 2 + \epsilon, \nu - 4 + 2\epsilon \\ \nu_{3} - 1 + \epsilon, \frac{\nu + \nu_{3} - 4}{2} + \epsilon, \frac{\nu + \nu_{3} - 3}{2} + \epsilon \end{array} \right) \right],$$

Boundaries: Expansion-by-regions

Limit of vanishing external momentum for the 1-loop bubble

Exploiting the DEs and imposing regularity

 $\eta \rightarrow 0$ limit must be regular

$$\frac{d}{d\eta} - \bigcirc = \frac{c_1(\eta)}{\eta} - \bigcirc + \frac{c_2(\eta)}{\eta} \bigcirc$$

 $\eta \rightarrow 0$ and DE impose constraints on the solution

Boundaries: Expansion-by-regions

Idea:

Pros:

• Impose behaviour coming from Expansion-by-regions • Impose cancellation of unwanted power behaviours • Getting linear relations between coefficients c_i

• DEs can be exploited to generate boundary constants • Only a limited set of integrals have to be known • Possible iterative strategy to evaluate missing integrals

Implementation under investigation

Examples

Examples: 1L triangle

$$\begin{split} P_1: & (p_1^2, p_2^2, s, m_1^2, m_2^2, m_3^2) = (2, -1/3, 50, 5, 7, 10) \\ P_2: & (p_1^2, p_2^2, s, m_1^2, m_2^2, m_3^2) = (2, -1/3, 1, 10, 10, 10) \\ P_3: & (p_1^2, p_2^2, s, m_1^2, m_2^2, m_3^2) = (2, -1/3, 1, 1 - i, 8/3 - 2i, 17 - i/4) \\ P_4: & (p_1^2, p_2^2, s, m_1^2, m_2^2, m_3^2) = (2, -1/3, -1, 0, 0, 0) \end{split}$$

target	P_1	P_2	P_3
from	AMF^0 , EBR	AMF^0, P_1	P_1
ϵ^{-2}	0	0	0
ϵ^{-1}	0	0	0
ϵ^0	-7.599624851460716e-2 -1.024202715501841e-1*i	-5.114624184386078e-2	-9.105983456552547e-2 -3.405963008295366e-2
ϵ^1	+2.851448508579519e-1 +1.498241156232269e-1*i	+1.461267744725764e-1	+2.054866656214297e-1 +2.780936409230585e-2
ϵ^2	-4.359339557414683e-1 -7.119426049903811e-2*i	-2.508159227043435e-1	-3.033284294289876e-1 -2.327298560596528e-2
ϵ^3	+4.673966245020759e-1 +5.243128182287680e-3*i	+3.394894906445344e-1	+3.792260921703711e-1 +1.589606675868420e-2
ϵ^4	-4.703087868710451e-1 +4.807793030293406e-3*i	-4.033919909274164e-1	-4.294046913943785e-1 -9.903139892953955e-3

Examples: 1L massless box

 $P_1: (s, t) = (1, -3)$ $P_2: (s, t) = (-11, 5)$

target	P_1	P_2
from	AMF^0 , EBR	AMF^0, P_1
ϵ^{-2}	-1.33333333333333380	-7.2727272727273e-2
ϵ^{-1}	+1.502029078980784e0 -2.094395102393195e0*i	+1.877005278194741e-1 -1.142397328578107e-1*i
ϵ^0	+3.741614747275086e0 +3.509845858409871e0*i	+2.698156090946971e-3 +3.398758787451875e-1*i
ϵ^1	-2.706665331892672e0 +5.235878433110419e0*i	-2.846794253590710e-1 -1.143352529230017e-1*i
ϵ^2	-5.048478376080319e0 -1.796965802540394e0*i	+9.893611975701797e-2 -1.978243414027738e-1*i
ϵ^3	+6.051530711191679e-1 -7.108042701350626e0*i	+1.402991837463381e-1 -3.176949541572250e-2*i
ϵ^4	+6.960674788336404e0 -6.425634195584692e0*i	+1.001382259037354e-1 +7.729488085430293e-3*i

Examples: 2L sunrise

 $P_{1}: (s, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}) = (-1, 2, 3, 5)$ $P_{2}: (s, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}) = (60, 2, 3, 5)$ $P_{3}: (s, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}) = (-1, 1, 5, 5)$ $P_{4}: (s, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}) = (-1, 0, 0, 0)$

target	P_1	P_2	P_3
from	AMF^0 , EBR	AMF^0, P_1	P_1
ϵ^{-4}	0	0	0
ϵ^{-3}	0	0	0
ϵ^{-2}	+5.000000000000000000	+5.0000000000000000000	+5.500000000000000000
ϵ^{-1}	-3.251477438310050e0	-1.850147743831005e1	-5.693751438257865e0
ϵ^0	+1.188378767646979e1	+6.552872234370230e1 -1.758371010882413e1*i	+1.867337540448070e1
ϵ^1	+1.952137703514755e1	-1.091156083475895e2 +2.967183417356042e1*i	+4.626131138234519e0
ϵ^2	-2.160341605441262e1	+3.251877471184126e2 -1.125285386030628e1*i	+7.465797730320954e0

$$\text{EBR}: s \rightarrow 0$$

Examples: 2L planar box

$$P_1: (s, t, m^2) = (-1, 2, 1)$$

$$P_2: (s, t, m^2) = (70, 50, 10)$$

$$P_3: (s, t, m^2) = (70, 50, 0)$$

target	P_1	P_2	P_3
from	AMF^0 , EBR	P_1	AMF^0 , P_1
ϵ^{-4}	0	0	+1.6326530612244
ϵ^{-3}	0	0	-1.5070745335714 +1.0258261726007
ϵ^{-2}	-1.684311982263061e-3	+7.121750612221514e-5 +1.223851404355579e-4*i	+2.7207465126049 -9.4692285661608
ϵ^{-1}	+4.026956116103587e-3	-7.645333935948279e-4 -3.758110807119310e-4*i	+1.5723474644211 +3.0594285856363
ϵ^0	-3.997722931454625e-3	+1.621191987913520e-3 -1.376157443003446e-4*i	-8.3408031707893 -2.5816548379679
ϵ^1	+6.237012138664067e-3	-2.779941041112323e-3 -3.108819053117712e-5*i	+1.4836746984598 -8.593463886823
ϵ^2	-4.987777863769356e-3	+5.841649978319638e-3 -1.900890782973601e-3*i	-4.9951336655555 +2.6452763261487

Examples: 2L planar box

$$P_1: (s, t, m^2) = (-1, 2, 1)$$

$$P_2: (s, t, m^2) = (70, 50, 10)$$

$$P_3: (s, t, m^2) = (70, 50, 0)$$

6 orders in ϵ	6 orders in ϵ	6 ord
8 digits accuracy	16 digits accuracy	32 digit
• n. MI(DE): 32	• n. MI(DE): 32	• n. MI(DE): 3
• n. MI(η DE): 68	• n. MI(η DE): 68	• n. MI(η DE):
• AMF ⁰ - P_1 : 12 reg + 2 sing	• AMF ⁰ - P_1 : 12 reg + 2 sing	• AMF ⁰ - P ₁
• kira: 133s	• kira: 133s	• kira: 13
• LINE(prop): 158s	• LINE(prop): 286s	• LINE(p
• AMFlow(prop): 1121s	• AMFlow(prop): 1740s	• AMFlow
• EBR($s, t \to 0$) $\to P_1$:	• EBR($s, t \rightarrow 0$) $\rightarrow P_1$:	• EBR($s, t \rightarrow$
• LINE: 4s	• LINE: 6s	• LINE: 2
• $P_1 \to P_2$: 18 reg + 4 sing	• $P_1 \rightarrow P_2$: 18 reg + 4 sing	• P ₁ \rightarrow P ₂ : 18
• LINE: 23s	• LINE: 41s	• LINE: 1

Examples: 2L non-planar triangle

$$P_1: (s, m^2) = (10,1)$$
$$P_2: (s, m^2) = (1,3)$$
$$P_3: (s, m^2) = (1,0)$$

target P_1		P_2	P_3	
from	AMF^0	P_1	AMF^0, F	
ϵ^{-4}	0	0	+1.000000000000	
ϵ^{-3} 0		0	-1.154431329803 +6.283185307179	
ϵ^{-2}	0	0	-2.894245735565 -7.253505969566	
ϵ^{-1}	+2.532501153536048e-1 +1.376560680870821e-1*i	-3.058450755305179e-2	+6.680132569623 -9.916741832990	
ϵ^0	-1.137868788629137e0 +1.315450793632957e0*i	+6.882432933483959e-2	+2.306015883275 -9.125506150626	
ϵ^1	-5.535444498587951e0 -1.578608277056101e0*i	+5.232509250247894e-2	+4.317677285401 +3.615355918032	
ϵ^2	-1.199497745643981e1 -8.780073080609521e0*i	+8.195254040212031e-1	+1.850496772277 +1.260787755350	

Examples: 2L non-planar triangle

$$P_1: (s, m^2) = (10,1)$$
$$P_2: (s, m^2) = (1,3)$$
$$P_3: (s, m^2) = (1,0)$$

8 digits accuracy6 orders in 68 digits accuracy16 digits accuracy	ϵ 6 orderracy32 digits
• n. MI(DE): 16• n. MI(DE): 16• n. MI(η DE): 52• n. MI(η DE): 52• AMF ⁰ - P ₁ : 16 reg + 2 sing• n. MI(η DE): 52• AMF ⁰ - P ₁ : 16 reg + 2 sing• AMF ⁰ - P ₁ : 16 reg• kira: 28s• kira: 28s• LINE(prop): 102s• kira: 28s• AMFlow(prop): 1087s• LINE(prop): 2• P ₁ \rightarrow P ₂ : 5 reg + 1 sing• LINE: 2s• LINE: 2s• LINE: 4s	$P_{1} \rightarrow P_{2} : 5 $ $P_{1} \rightarrow P_{2} : 5 $ $P_{1} \rightarrow P_{2} : 5 $

ers in ϵ

s accuracy

6

52

: 16 reg + 2 sing

BS

```
prop): 531s
```

```
ow(prop): 1597s
```

```
reg + 1 sing
```

8.5s

Examples: 2L non-planar box, 5 masses

$$P_{1}: (s, t, m^{2}) = (3, 2, 1)$$

$$P_{2}: (s, t, m^{2}) = (5, 2, 1)$$

$$P_{3}: (s, t, m^{2}) = (2, 8, 1)$$

$$P_{4}: (s, t, m^{2}) = (2, 10, 1)$$

$$P_{5}: (s, t, m^{2}) = (-3, -5, 1)$$

$$P_{6}: (s, t, m^{2}) = (-1, -3, 1)$$

target	P_1	P_2	P_3	P_4	P_5	P_6
from	AMF^0	AMF^0, P_1	AMF^0	AMF^0 , P_3	AMF^0	AMF^0 , P_5
ϵ^0	+2.576938753803745e-1 -2.465521721983634e-1*i	+2.518740723653660e-1 -1.169079848124980e-1*i	+2.751593454707949e-1 -3.815281539209958e-1*i	+2.506591535092400e-1 -4.235680397875819e-1*i	-2.405260844173886e-1 -5.984661196233730e-3*i	-4.831181490833649e-1
ϵ^1	+9.839059948409147e-1 -1.447010196851563e-1*i	+8.377932210850515e-1 +2.609108724913395e-1*i	+1.257054227433279e0 +4.342974425182124e-1*i	+1.187415013371159e0 -5.997939132016630e-1*i	-5.588054474320729e-1 -3.250774673987693e-2*i	-1.396083737425863e0
ϵ^2	+1.881565035678200e0 -4.606206236766448e-3*i	+1.544162064068738e0 +1.125263466661532e0*i	+2.478546160626464e0 -2.47049854421279e-1*i	+2.372121269639779e0 -5.961585949177441e-1*i	-1.124284189077083e0 -8.467242364778369e-2*i	-3.146872480560270e0

Examples: 2L non-planar box, 4 masses

 $P_1: (s, t, m^2) = (1, 2, 100)$ $P_2: (s, t, m^2) = (500, 150, 100)$

target	Q_1	Q_2
from	AMF^0	AMF^0, Q_1
ϵ^{-4}	0	0
ϵ^{-3}	-2.634309928357791e-7	+7.825617108436437e-8 -2.554478084014810e-7*i
ϵ^{-2}	+2.177434402618331e-6 -1.655185743641498e-6*i	+5.136099594647812e-9 +3.245051324395477e-6*i
ϵ^{-1}	+2.177434402618331e-6 +1.533076938553119e-5*i	+5.136099594647812e-9 -3.407024087192466e-5*i
ϵ^0	-2.810879169233962e-5 -3.761642841819541e-5*i	+2.470711494037188e-4 -6.343358651146831e-5*i
ϵ^1	+6.424181660342731e-5 +3.595559671704640e-5*i	+3.561272520516187e-5 +6.872261543040661e-4*i
ϵ^2	-1.721862393547420e-4 -1.231788432398794e-5*i	-7.247299398344942e-4 +6.092012063072394e-5*i

Examples: 2L non-planar box, 4 masses

 $P_1: (s, t, m^2) = (1, 2, 100)$ $P_2: (s, t, m^2) = (500, 150, 100)$

6 orders in ϵ	6 orders in ϵ	6 order
8 digits accuracy	16 digits accuracy	32 digits a
 n. MI(DE): 55 n. MI(ηDE): 144 AMF⁰ - Q₁: 31 reg + 2 sing kira: 15180s LINE(prop): 3066s Q₁ → Q₂: 26 reg + 6 sing LINE: 108s 	 n. MI(DE): 55 n. MI(ηDE): 144 AMF⁰ - Q₁: 31 reg + 2 sing kira: 15180s LINE(prop): 6600s Q₁ → Q₂: 26 reg + 6 sing LINE: 214s 	• n. MI(DE): 55 • n. MI(η DE): 14 • AMF ⁰ – Q_1 : 3 • kira: 1518 • LINE(pro • $Q_1 \rightarrow Q_2$: 26 f • LINE: 49

Examples

		hinom diaite		
		binary digits		
results	32(8 dec)	64(16 dec)	107(32 dec)	
internal	313	506	893	
		timing(sec)		
np-triangle	102	210	531	
planar box	158	286	762	$\int [i] \propto [n]$
np-box	3066	6600	14350	$\left.\right\} [t] \propto [n]^{1.4}$

Conclusions

We present LINE, a **novel C implementation** of the solution of **DEs via series expansions**

- Fully **open source**, available at https://github.com/line-git/line.git
- LINE implements the **auxiliary-mass flow method**, allowing to find BC within the tool up to 2L
- Self-contained evaluation of the **numerical accuracy**

What's next?

- Exploring **expansion-by-region method** for generalizing the extraction of BC from the DE
- Testing and extending LINE at higher loops
- **High-level structure**, allowing new features:
 - Unitarity cuts
 - **Recursive BC** at $\eta \to \infty$ a la AMFlow
 - Managing linear propagators
 - Investigating phase space for a **smart choice of the paths**

Thank you for your attention!

Jonathan Ronca — Loop Integrals Numerical Evaluation with LINE — Scattering Amplitudes @ Liverpool — 26.03.2025