

Fast evaluation of Feynman integrals for MC generators

Pau Petit Rosàs

In collaboration with W. Torres Bobadilla

Background & Motivation

To understand the *g-2* anomaly we need [1]

- New data-driven analysis
- MC generators with NNLO $e^+e^- \rightarrow x^+x^- + \gamma$

•
$$x \in \{\mu, \pi\}$$

• Better modelling for pions

$$> Improve the MC Phokhara with - \frac{\epsilon}{\epsilon} e^2 for NLO \\ GVMD for \pi [2]$$

Background & Motivation

To understand the g-2 anomaly we need [1]

- New data-driven analysis
- MC generators with NNLO $e^+e^- \rightarrow x^+x^- + \gamma$

•
$$x \in \{\mu, \pi\}$$

• Better modelling for pions

NNLO
Improve the MC Phokhara with - GVMD for π [2]

The GVMD model

$$F_{\pi}(q^2) = \sum_{v=1}^{3} a_v \frac{\Lambda_v}{\Lambda_v - q^2} = \sum_{v=1}^{3} a_v \left(1 + \frac{q^2}{\Lambda_v - q^2} \right)$$

ISR NLO 2y* diagrams

ISR NLO 2y* diagrams

$$A_{TVP} \propto F_{\pi}(q_1^2) D_{\mu\nu}(q_1^2) F_{\pi}(q_2^2) D_{\mu\nu}(q_2^2)$$

$$A_{TVP} \propto \sum_{w=1}^{3} \sum_{v=1}^{3} a_v \left(D_{\mu\nu}(q_1^2) + \frac{i\eta_{\mu\nu}}{\Lambda_v - q_1^2} \right) a_w \left(D_{\mu\nu}(q_2^2) + \frac{i\eta_{\mu\nu}}{\Lambda_w - q_2^2} \right)$$

 $\gamma(q_4)$

ISR NLO 2y* diagrams

$$A_{TVP} \propto F_{\pi}(q_1^2) D_{\mu\nu}(q_1^2) F_{\pi}(q_2^2) D_{\mu\nu}(q_2^2)$$

$$A_{TVP} \propto \sum_{w=1}^{3} \sum_{v=1}^{3} a_v \left(D_{\mu\nu}(q_1^2) + \frac{i\eta_{\mu\nu}}{\Lambda_v - q_1^2} \right) a_w \left(D_{\mu\nu}(q_2^2) + \frac{i\eta_{\mu\nu}}{\Lambda_w - q_2^2} \right)$$

Still a 5 point integral at maximum, but we need to work with up to **9 kinematic variables**. We choose

$$\bar{x} = \{s_{14}, s_{15}, s_{23}, s_{24}, s_{35}, m_e^2, m_\pi^2, m_v^2, m_w^2\}$$

We have 16 possible combinations of m_v , m_w times 2 permutations of the external momenta

What do we need?

- Fast integrator → No mathematica package
- Precise, but no need for 50 significant figures!
- Exploit the fact that we only need to change values of m_v , m_w

DiffExp [3] method: write Master Integrals in **differential form**, evolve it variable by variable from a boundary value to the desired final point with the **Frobenius method**. Avoid singularities with analytic continuation.

We could generate a grid of solutions with tools like DiffExp or SeaSyde [4], but dimensionality of the problem is large

What do we need?

- Fast integrator → No mathematica package
- Precise, but no need for 50 significant figures!
- Exploit the fact that we only need to change values of m_v , m_w

DiffExp [3] method: write Master Integrals in **differential form**, evolve it variable by variable from a boundary value to the desired final point with the **Frobenius method**. Avoid singularities with analytic continuation.

We could generate a grid of solutions with tools like DiffExp or SeaSyde [4], but dimensionality of the problem is large

What if we evolve the differential equations numerically?

C++ integrator

Example

- 10 MIs, 5 orders of ε
- O(us) per phase-space point
- 7+ significant figures of precision

Example 2.0

- 8 MIs, 5 orders of ε
- O(ms) per phase-space point
- 7+ significant figures of precision

The topologies

$$I_{a,b,c,d,e}^{X} = \int \frac{d^{D}k}{i\pi^{D/2}} \frac{1}{P_{1}^{a}P_{2}^{b}P_{3}^{c}P_{4}^{d}P_{5}^{e}}$$

	MM	MN	NN
P_1	$m_w^2 - p^2$	$-p^2$	$-p^2$
P_2	$m_{\pi}^2 - (p - q_3)^2$	$m_{\pi}^2 - (p - q_3)^2$	$m_{\pi}^2 - (p - q_3)^2$
P_3	$m_e^2 - (p + q_2)^2$	$m_e^2 - (p + q_2)^2$	$m_e^2 - (p + q_2)^2$
P_4	$m_v^2 - (p + q_{124})^2$	$m_v^2 - (p + q_{124})^2$	$-(p+q_{124})^2$
P_5	$m_e^2 - (p + q_{24})^2$	$m_e^2 - (p + q_{24})^2$	$m_e^2 - (p + q_{24})^2$
	29 MIs	25 MIs	21 MIs

Obtaining the DE

- Canonical MIs obtained by studying Leading & Landau singularities in different dimensions
- Use of FiniteFlow [5] to reconstruct the DEs with an ansatz based on the alphabet

$$d\bar{J} = \epsilon \sum_{i=1}^{n} \mathbf{A}_{i} dlog(\alpha_{i}) \bar{J}$$

• Letters of the alphabet predicted by combining **BaikovLetters** [6] and **Effortless** [7]

$$\alpha_i = \frac{P(\bar{x}) + Q(\bar{x})r_k}{P(\bar{x}) - Q(\bar{x})r_k} \qquad \alpha_i = \frac{P(\bar{x}) + Q(\bar{x})r_kr_j}{P(\bar{x}) - Q(\bar{x})r_kr_j}$$

[5] T. Peraro (2019)

A surprise

Reconstruction fails for some elements, but we can reconstruct the DEs without ansatz.

By direct integration of the result, the new letters that appear have the form:

$$\alpha_{i} = \frac{P(\bar{x}) \pm Q(\bar{x})r_{k} + r_{j}R_{k,\pm}}{P(\bar{x}) \pm Q(\bar{x})r_{k} + r_{j}R_{k,\pm}} \qquad R_{k,\pm} = \sqrt{K(\bar{x}) \pm T(\bar{x})r_{k}}$$

First time letters with nested roots in 1-Loop calculations! Already appeared in penta-triangles sectors in High Energy physics calculations of 2-Loops in Refs. [8,9]

- In entries X of **dJ_pent = X*J_triang + ...** In particular, $I_{1,0,1,0,1}$, $I_{0,0,1,1,1}$, $I_{0,1,1,0,1}$ for the partial DE of s_{14}
- Also appear for massless photons!
- A lot of open questions...
 - How can we predict them algorithmically? Can we understand the 2 loop structure better from this? Can we rationalize them? What happens if we work with momentum-twistor representation? ...

Returning to the integrator...

- 1. Get partial DE w.r.t. each kinematic variable
- 2. Input expression for each MI and order of epsilon in terms of letters and other MIs
- 3. Input values for pre-canonical MIs obtained with AMFlow at a non-singular arbitrary point
- 4. Input singularities and branch cuts
- 5. Input expressions for derivatives of letters and square roots
- 6. Find optimal path between origin and desired final point for each kin. var.
- 7. Evolve the DE variable by variable in that path:
 - a. Multiply the AMFlow values by the canonical factors defined in terms of the current variable
 - b. Solve the coupled partial DE with controlled stepper from **Boost Odeint** library
 - c. Divide out the canonical factors from the solution
- 8. If desired, use the final result to go to a new final point

Returning to the integrator...

- 1. Get partial DE w.r.t. each kinematic variable
- 2. Input expression for each MI and order of epsilon in terms of letters and other MIs
- 3. Input values for pre-canonical MIs obtained with AMFlow at a non-singular arbitrary point
- 4. Input singularities and branch cuts
- 5. Input expressions for derivatives of letters and square roots
- 6. Find optimal path between origin and desired final point for each kin. var.
- 7. Evolve the DE variable by variable in that path:
 - a. Multiply the AMFlow values by the canonical factors defined in terms of the current variable
 - b. Solve the coupled partial DE with controlled stepper from **Boost Odeint** library
 - c. Divide out the canonical factors from the solution
- 8. If desired, use the final result to go to a new final point

$$r_i = \sqrt{K_i^n(\bar{x})} \qquad \longrightarrow \qquad K^n(\bar{x}) = \prod_{j=1}^n (x - e_j) \qquad \longrightarrow \qquad \prod_{j=1}^n (x - e_j) - \lambda = 0$$

$$r_i = \sqrt{K_i^n(\bar{x})} \qquad \longrightarrow \qquad K^n(\bar{x}) = \prod_{j=1}^n (x - e_j) \qquad \longrightarrow \qquad \prod_{j=1}^n (x - e_j) - \lambda = 0$$

$$r_i = \prod_{j=1}^n \sqrt{x - e_j} \qquad \longrightarrow \qquad e_j + \lambda_j = 0$$

$$r_i = \sqrt{K_i^n(\bar{x})} \qquad \longrightarrow \qquad K^n(\bar{x}) = \prod_{j=1}^n (x - e_j) \qquad \longrightarrow \qquad \prod_{j=1}^n (x - e_j) - \lambda = 0$$

$$r_i = \prod_{j=1}^n \sqrt{x - e_j} \qquad \longrightarrow \qquad e_j + \lambda_j = 0$$

We use the standard convention from mathematical software: branch cuts parallel to the negative real axis.

Results

Comparison with Collier. Results of $\boldsymbol{I}_{1,0,1,1,1}$ at finite order

Results

Comparison with Collier. Results of $I_{1,0,1,1,0}$ at finite order

Summary

- 1. Interested in $e^+e^- \rightarrow \pi^+\pi^- + \gamma$, with massive γ^*
- 2. Obtained the relevant DEs up to finite order for pentagon topologies
- 3. Discovery of nested square roots in letters of higher orders
- 4. Understood the branch cuts and singularities of the DEs
- 5. Built a C++ integrator capable of calculating integrals with enough precision and speed for MCs
- 6. Started to verify the results with other tools

Future work

Coming for sure:

- Reconstruct DE for pentagons, more validation
- Net of boundary values
- Publication is in the works
- Arbitrary precision

Even more future work:

- Harder DEs, explore NNLO
- Error estimate of the integrator
- Evaluation of DEs beyond "dlog form"
- GPU parallelization?

Future work

Coming for sure:

- Reconstruct DE for pentagons, more validation
- Net of boundary values
- Publication is in the works
- Arbitrary precision

Even more future work:

- Harder DEs, explore NNLO
- Error estimate of the integrator
- Evaluation of DEs beyond "dlog form"
- GPU parallelization?

Thank you!