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Background & Motivation

To understand the g-2 anomaly we need [1]

● New data-driven analysis

● MC generators with NNLO  e+e– →  x+x– + ɣ  

● x ∈  { 𝜇, 𝜋 }

● Better modelling for pions

➢ Improve the MC Phokhara with 

NNLO

𝟄, 𝟄2 for NLO

GVMD for 𝜋 [2]

1
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The GVMD model

 Figure from F. Ignatov, R.N. Lee (2022)

 a



q
3

 ↔ q
5

3

ISR NLO 2ɣ* diagrams 
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Still a 5 point integral at maximum, but we need to work 

with up to 9 kinematic variables. We choose

3

ISR NLO 2ɣ* diagrams 

We have 16 possible combinations of mv, mw  times 2 

permutations of the external momenta



● Fast integrator → No mathematica package

● Precise, but no need for 50 significant figures!

● Exploit the fact that we only need to change values of mv, mw  

DiffExp [3] method: write Master Integrals in differential form, evolve it variable by variable from a boundary value to 

the desired final point with the Frobenius method. Avoid singularities with analytic continuation.

We could generate a grid of solutions with tools like DiffExp or SeaSyde [4], but dimensionality of the problem is large

Im(s)

X Re(s)

4

What do we need?

[3] M. Hidding (2020)
[4] T. Armadillo et al (2022)
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What do we need?

What if we evolve the differential equations numerically?

C++ integrator
[3] M. Hidding (2020)
[4] T. Armadillo et al (2022)
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● 10 MIs,  5 orders of ε

●  O(𝜇s)  per phase-space point

● 7+ significant figures of precision

5

Example



● 8 MIs,  5 orders of ε

●  O(ms)  per phase-space point

● 7+ significant figures of precision
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Example 2.0
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29 MIs 25 MIs 21 MIs 

The topologies



● Canonical MIs obtained by studying Leading & Landau singularities in different dimensions 

● Use of FiniteFlow [5] to reconstruct the DEs with an ansatz based on the alphabet

● Letters of the alphabet predicted by combining BaikovLetters [6] and Effortless [7]
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Obtaining the DE

[5] T. Peraro (2019)
[6] X. Jiang (2024)
[7] A. Matijašić, J. Miczajka (xxxx)
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Reconstruction fails for some elements, but we can reconstruct the DEs without ansatz.

By direct integration of the result, the new letters that appear have the form:

First time letters with nested roots in 1-Loop calculations! Already appeared in penta-triangles sectors in High 
Energy physics calculations of 2-Loops in Refs. [8,9]

● In entries X of  dJ_pent = X*J_triang + … In particular, I
1,0,1,0,1

, I
0,0,1,1,1

,I
0,1,1,0,1

 for the partial DE of s
14

● Also appear for massless photons!
● A lot of open questions…

○ How can we predict them algorithmically? Can we understand the 2 loop structure better from this? Can we 
rationalize them? What happens if we work with  momentum-twistor representation? …
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A surprise

[8] F. Febres Cordero et al (2023)
[9] M. Becchetti et al (2025)
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1. Get partial DE w.r.t. each kinematic variable

2. Input expression for each MI and order of epsilon in terms of letters and other MIs

3. Input values for pre-canonical MIs obtained with AMFlow at a non-singular arbitrary point

4. Input singularities and branch cuts

5. Input expressions for derivatives of letters and square roots

6. Find optimal path between origin and desired final point for each kin. var.

7. Evolve the DE variable by variable in that path:

a. Multiply the AMFlow values by the canonical factors defined in terms of the current variable

b. Solve the coupled partial DE with controlled stepper from Boost Odeint library

c. Divide out the canonical factors from the solution

8. If desired, use the final result to go to a new final point

10

Returning to the integrator…
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Branch cuts and paths

We use the standard convention from 
mathematical software: branch cuts 
parallel to the negative real axis.
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Results

Comparison with Collier. Results of I
1,0,1,1,1

 at finite order

Re Im

*Thanks to Daniel Gerardo Melo Porras
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1. Interested in  e+e– → π+π– + ɣ , with massive ɣ*

2. Obtained the relevant DEs up to finite order for pentagon topologies

3. Discovery of nested square roots in letters of higher orders

4. Understood the branch cuts and singularities of the DEs

5. Built a C++ integrator capable of calculating integrals with enough precision and speed for MCs

6. Started to verify the results with other tools
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Summary



Coming for sure:

● Reconstruct DE for pentagons, more validation

● Net of boundary values

● Publication is in the works

● Arbitrary precision

17

Even more future work:

● Harder DEs, explore NNLO

● Error estimate of the integrator

● Evaluation of DEs beyond “dlog form”

● GPU parallelization?

Future work
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Thank you!


