Modern Integration-by-parts Techniques

Università degli Studi di Padova

Sid Smith

Based on work with

T. Dave, G. Crisanti, P. Mastrolia, W. J. Torres Bobadilla, J. Ronca, M. K. Mandal, G. Brunello, M. Bigazzi & M. Zeng THE UNIVERSITY of EDINBURGH

Motivation: Amplitudes

- Observables are given by Amplitudes.
- In perturbative Quantum Field Theory, Amplitudes are given by a sum of Feynman Diagrams

 Each Feynman Diagram corresponds to a Feynman Integral

$$I(n_1, \dots, n_N) = \int \prod_{a=1}^L d^D \ell_a \frac{1}{\rho_1^{n_1} \cdots \rho_N^{n_N}}$$

[Chetyrkin, Tkachov, 1981]

٠

IBPs: Integral Families

An integral family/topology is defined by

- A set of loop momenta ℓ_1, \dots, ℓ_L .
- A set of independent *external momenta* p_1, \dots, p_E .
- A set of propagators ρ_1, \dots, ρ_N , of which some can appear as denominators, and some as numerators.

For Example:

$$\rho_{1} = \ell_{1}^{2}, \qquad \rho_{2} = \ell_{2}^{2}, \qquad \rho_{3} = (\ell_{1} + \ell_{2} - p)^{2}$$
$$\rho_{4} = \ell_{1} \cdot p, \qquad \rho_{5} = \ell_{2} \cdot p$$

IBPs: The Laporta Approach

[Laporta, 2000] [LiteRed, Reduze, FIRE, Kira]

- IBP Identities give us relations between integrals in a given family.
- We can input values of the initial vector \vec{n} into these identities to generate a system of equations, this is known as seeding.
- The aim is to row-reduce this matrix until there exists an equation of the form

$$(Target) - \sum_{i} c_{i} J_{i} = 0$$

$$0 = \int \prod_{a=1}^{L} d^{D} \ell_{a} \frac{\partial}{\partial \ell_{b}^{\mu}} \frac{q_{\alpha}^{\mu}}{\rho_{1}^{n_{1}} \cdots \rho_{N}^{n_{N}}}$$
$$q_{\alpha}: \{\ell_{1}, \dots, \ell_{L}, p_{1}, \dots, p_{E}\}$$

$$0 = \sum_{i} (\alpha_{i} + \vec{\beta}_{i} \cdot \vec{n}) I[\vec{n} + \vec{\gamma}_{i}]$$
$$\iint \text{Seeding } \vec{n} \text{-values}$$

$$\begin{pmatrix} \# & \cdots & \# \\ \vdots & \ddots & \vdots \\ \# & \cdots & \# \end{pmatrix} \begin{pmatrix} I(\dots) \\ \vdots \\ I(\dots) \end{pmatrix} = 0$$

IBPs: Limitations

Current State-of-the-art:
2-Loop: 5- or 6-point
3-Loop: 4-point

[Abreu, Ita, Moriello, Page, Tschernow, Zeng, 2020] [Chakraborty, Gambuti, 2022] [Gehrmann, Jakubčík, Mella, Syrrakos, Tancredi, 2023] [De Laurentis, 2024] [Bercini, 2024] [Henn, Matijašić, Miczajka, Peraro, Xu, Zhang, 2024] [Gehrmann, Henn, Jakubčík, Lim, Mella, 2024] [Henn, Torres Bobadilla, Lim, 2023/24]

Multi-loop: Increased number of Equations and Variables, larger System of Equations.

Multi-scale: More External Legs and Masses mean more parameters to keep track of when performing row reduction.

High Rank: For Amplitudes calculations, one has to deal with integrals of higher ranks

Topology Mapping: Sub-Topologies

- Loop momenta $\vec{\ell}$, external momenta \vec{p}
- Topology A: $\{\vec{\rho}_A(\vec{\ell},\vec{p})\}$
- Topology B: $\{\vec{\rho}_B(\vec{\ell},\vec{p})\}$

Topology A is a sub-topology of topology B if and only if there exists a *special linear* transformation

$$\vec{\ell} \rightarrow \vec{\ell}' = M^{int} \cdot \vec{\ell} + M^{ext} \cdot \vec{p}$$

such that

$$\vec{\rho}_A(\vec{\ell}',\vec{p})\subseteq\vec{\rho}_B(\vec{\ell},\vec{p})$$

[Dave, Torres Bobadilla, 2024]

 $\vec{\rho}_A = \{(\ell - p_3)^2, (\ell + p_1 + p_2)^2, \ell^2\}$ $\vec{\rho}_B = \{\ell^2, (\ell - p_1)^2, (\ell - p_1 - p_2)^2, (\ell - p_1 - p_2 - p_3)^2\}$

$$\begin{split} \ell \to \ell - p_1 - p_2 \\ M^{int} &= (1), \qquad M^{ext} = (-1 \quad -1 \quad 0) \\ \vec{\rho}_A \Big|_{\ell \to \ell - p_1 - p_2} &= \{ (\ell - p_1 - p_2 - p_3)^2, \ell^2, (\ell - p_1 - p_2)^2 \} \subset \vec{\rho}_B \end{split}$$

Topology Mapping: Symanzik Polynomials

In Feynman Parameters, our Feynman Integral takes the form

$$I(\vec{n}) = \int_0^\infty d^N x \, \delta(1 - \sum x_\alpha) \prod_{\alpha=1}^N x_\alpha^{n_\alpha - 1} \frac{F^{\frac{LD}{2} - n}}{U^{(L+1)\frac{D}{2} - n}}$$

F and *U* are *Symanzik*, *graph-theoretic* polynomials, which are independent of loop momenta shifts.

In this framework a topology is defined by $\{N, U, F\}$.

[Lee, Pomeransky, 2013]

$$U_A \Big|_{x_1 \leftrightarrow x_2} = x_2 + x_1 + x_3, \qquad F_A \Big|_{x_1 \leftrightarrow x_2} = sx_1x_3$$
$$U_B \Big|_{x_2 = 0, x_4 = x_2} = x_1 + x_3 + x_2, \qquad F_B \Big|_{x_2 = 0} = s x_1x_3$$

Spanning Cuts: What is a cut?

Loosely speaking, cutting a propagator means enforcing that this propagator is on-shell

$$\frac{1}{\rho_i} \to \delta(\rho_i)$$

For squared propagators this is more complex, but can be achieved through using IBPs.

If a cut propagator does not appear as a denominator in a Feynman Integral, this integral is *zero on the cut*.

Cuts commute with IBPs.

$$I_C = \sum_i c_i J_{C,i}$$

Spanning Cuts: IBPs with Cuts

We can consider our previous IBP system on a cut C, by making the change

$$I(n_1, \dots, n_N) \to I_C(n_1, \dots, n_N) = \begin{cases} I(n_1, \dots, n_N), & n_i < 0 \forall i \in C \\ 0, & \text{otherwise} \end{cases}$$

The IBP Equations will therefore become

$$0 = \sum_{i} (\alpha_i + \vec{\beta}_i \cdot \vec{n}) I[\vec{n} + \vec{\gamma}_i] \Rightarrow 0 = \sum_{i} (\alpha_i + \vec{\beta}_i \cdot \vec{n}) I_C[\vec{n} + \vec{\gamma}_i]$$

This means we can remove a lot of variables/equations from our system.

Spanning Cuts: Finding a Spanning Set

Syzygies

[Blade, NeatIBP]

Syzygies: Reducing Size of System

When generating IBP identities using the Laporta approach, the derivative acting on the propagators will usually give rise to integrals with a larger value of n_i than the seed integral

$$0 = \int \prod_{a=1}^{L} d^{D} \ell_{a} \frac{\partial}{\partial \ell_{b}^{\mu}} \frac{q_{\alpha}^{\mu}}{\rho_{1}^{n_{1}} \cdots \rho_{N}^{n_{N}}}, \qquad q_{\alpha}^{\mu} \frac{\partial}{\partial \ell_{b}^{\mu}} \frac{1}{\rho_{i}^{n_{i}}} = \frac{1}{\rho_{i}^{n_{i+1}}} q_{\alpha}^{\mu} \frac{\partial}{\partial \ell_{b}^{\mu}} \rho_{i}$$

Let's try to make our identity more generic...

Syzygies: Reducing Size of System

When generating IBP identities using the Laporta approach, the derivative acting on the propagators will usually give rise to integrals with a larger value of n_i than the seed integral

$$0 = \int \prod_{a=1}^{L} d^{D} \ell_{a} \frac{\partial}{\partial \ell_{b}^{\mu}} \frac{v_{b}^{\mu}}{\rho_{1}^{n_{1}} \cdots \rho_{N}^{n_{N}}}, \qquad v_{b}^{\mu} \frac{\partial}{\partial \ell_{b}^{\mu}} \frac{1}{\rho_{i}^{n_{i}}} = \frac{1}{\rho_{i}^{n_{i}+1}} v_{b}^{\mu} \frac{\partial}{\partial \ell_{b}^{\mu}} \rho_{i} = \frac{f_{i}(\rho)}{\rho_{i}^{n_{i}}}$$

Let's try to make our identity more generic...

$$v_b^\mu \equiv v_b^\mu(\rho)$$
, we can choose it such that $v_b^\mu \frac{\partial \rho_i}{\partial \ell_b^\mu} = f_i(\rho) \rho_i$
Why?

Syzygies: Where do they come in?

Let's expand $v_b^{\mu} = P_{b\alpha}(\rho)q_{\alpha}^{\mu}$, then the condition becomes $P_{b\alpha}(\rho)q_{\alpha}^{\mu}\frac{\partial}{\partial \ell_b^{\mu}}\rho_i = f_i(\rho)\rho_i$ $P_{11}(\rho)q_1^{\mu}\frac{\partial}{\partial \ell_1^{\mu}} {\rho_1 \choose \vdots} + \dots + P_{L,L+E}(\rho)q_{L+E}^{\mu}\frac{\partial}{\partial \ell_L^{\mu}} {\rho_1 \choose i} - f_1(\rho) {\rho_1 \choose \vdots} - \dots - f_N(\rho) {0 \choose \vdots} = 0$ $\vec{c}^T M = 0, \qquad M = \begin{pmatrix} q_1^{\mu}\frac{\partial\rho_1}{\partial \ell_1^{\mu}} & \dots & q_1^{\mu}\frac{\partial\rho_N}{\partial \ell_1^{\mu}} \\ \vdots & \ddots & \vdots \\ q_{L+E}^{\mu}\frac{\partial\rho_1}{\partial \ell_L^{\mu}} & \dots & q_{L+E}^{\mu}\frac{\partial\rho_N}{\partial \ell_L^{\mu}} \\ \vdots & \ddots & \vdots \\ 0 & \dots & -\rho_N \end{pmatrix}, \qquad \vec{c} = \begin{pmatrix} P_{11}(\rho) \\ \vdots \\ P_{L,L+E}(\rho) \\ f_1(\rho) \\ \vdots \\ f_{N(\rho)} \end{pmatrix}$

This is a Syzygy Equation over a Module M, we can use Singular to find the solutions.

Summary

- Lots of new and exciting advancements being made in the world of IBPs
- By combining all these different ideas, we can push the state-ofthe-art further and acquire more precise calculations

Ongoing Questions

- **Syzygy Selection:** Once we have generate syzygy solutions, how do we choose which ones are necessary for an IBP reduction?
- Seeding Choices: Once we have a set of IBP Identities, how do we find the minimal amount of seed integrals necessary for a reduction?

Extra Slides

Topology Mapping: Sub-Topologies

- Topology A: $\{N_A, U_A, F_A\}$
- Topology B: $\{N_B, U_B, F_B\}$

Topology A is a sub-topology of topology B if and only if $N_B \ge N_A$ and there exists some set of $N_B - N_A$ integers R and some permutation matrix P such that

$$U_A(P\vec{x}) = O\left(U_B(\vec{x})\Big|_{x_i \to 0, i \in R}\right)$$
$$F_A(P\vec{x}) = O\left(F_B(\vec{x})\Big|_{x_i \to 0, i \in R}\right)$$

O is an ordering function for the variables \vec{x}

 $U_{A} = x_{1} + x_{2} + x_{3}, \qquad F_{A} = sx_{2}x_{3}$ $U_{B} = x_{1} + x_{2} + x_{3} + x_{4}, \qquad F_{B} = sx_{1}x_{3} + tx_{2}x_{4}$ $s = (p_{1} + p_{2})^{2}, \qquad t = (p_{2} + p_{3})^{2}$ $R = \{2\} \qquad P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $U_{A}(P\vec{x}) = x_{2} + x_{1} + x_{3} = U_{B}(\vec{x}) \Big|_{x_{i} \to 0, i \in R}$ $F_{A}(P\vec{x}) = sx_{1}x_{3} = F_{B}(\vec{x}) \Big|_{x_{i} \to 0, i \in R}$

Spanning Cuts: Finding a Spanning Set

A zero sector is one where the equation below has a z-independent solution for k_{α} .

$$\sum_{\alpha} k_{\alpha} x_{\alpha} \frac{\partial}{\partial x_{\alpha}} (U+F) = U+F$$

Once one has determined all the non-zero sectors $\{S_i\}_{i=1,...,|S|}$, the set of spanning cuts is the minimal set of cuts $\{C_i\}_{i=1,...,|C|}$ such that

$$\forall S_i: \exists C_j | C_j \subseteq S_i$$