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Motivation: Amplitudes

• Observables are given by Amplitudes.
• In perturbative Quantum Field Theory, Amplitudes are 

given by a sum of Feynman Diagrams

• Each Feynman Diagram corresponds to a Feynman 
Integral
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Motivation: Integration-
by-parts

Generate All Contributing 
Diagrams

Express Diagrams in Terms of 
Scalar Feynman Integrals

Reduce Diagrams to a Subset 
of Master Integrals

Evaluate Master Integrals

• Feynman Integrals 𝐼 𝑛!, … , 𝑛"  belong to a Vector 
Space, the topology defines the space, and the 
indices 𝑛# define the element. 

• There exists a basis on this vector space, known as 
the Master Integrals.

• Integration-by-parts (IBP) Identities can be used to 
find the coefficients 𝑐#

𝐼 = 	5
*

𝑐*𝐽*

[Smirnov, Petukhov, 2010]

[Chetyrkin, Tkachov, 1981]

[Mastrolia, Mizera, 2019]



IBPs: Integral Families
An integral family/topology is defined by

• A set of loop momenta ℓ#, … , ℓ$.

• A set of independent external momenta 𝑝#, … , 𝑝% .
• A set of propagators 𝜌#, … , 𝜌&, of which some can appear as 

denominators, and some as numerators. 

For Example:

𝜌# = ℓ#', 	 𝜌' = ℓ'', 	 𝜌( = ℓ# + ℓ' − 𝑝 '

𝜌) = ℓ# ⋅ 𝑝, 	 𝜌* = ℓ' ⋅ 𝑝



IBPs: The Laporta 
Approach
• IBP Identities give us relations between integrals in a given 

family.

• We can input values of the initial vector 𝑛 into these 
identities to generate a system of equations, this is known 
as seeding.

• The aim is to row-reduce this matrix until there exists an 
equation of the form

0 = ./
%&#

'

𝑑(ℓ%
𝜕
𝜕ℓ+

,
𝑞-
,

𝜌#
)!⋯𝜌$

)"

0 = 5
*

(𝛼* + 𝛽* ⋅ 𝑛)𝐼[𝑛 + 𝛾⃗*]

⟹

Seeding 𝑛-values

# ⋯ #
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⋮
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𝑞!: {ℓ", … , ℓ# , 𝑝", … , 𝑝$}
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[Laporta, 2000] [LiteRed, Reduze, FIRE, Kira]



IBPs: Limitations
Current State-of-the-art:
2-Loop: 5- or 6-point
3-Loop: 4-point

Multi-loop: Increased number of Equations 
and Variables, larger System of Equations.
Multi-scale: More External Legs and Masses 
mean more parameters to keep track of when 
performing row reduction.
High Rank: For Amplitudes calculations, one 
has to deal with integrals of higher ranks

[Abreu, Ita, Moriello, Page, Tschernow, Zeng, 2020]

[De Laurentis, 2024] 

[Bercini, 2024] 

[Henn, Matijašić, Miczajka, Peraro, Xu, Zhang, 2024] 

[Chakraborty, Gambuti, 2022]

[Gehrmann, Jakubčík, Mella, Syrrakos, Tancredi, 2023]

[Gehrmann, Henn, Jakubčík, Lim, Mella, 2024] 

[Henn, Torres Bobadilla, Lim, 2023/24] 



Topology Mapping
tapir [Gerlach, Herren, Lang, 2022]



𝒜!"# 𝑔𝑔 → 𝑔𝑔 =	 + + + +⋯

(Permutations)



Topology Mapping: 
Sub-Topologies

• Loop momenta ℓ, external momenta 𝑝⃗

• Topology A: {𝜌⃗+(ℓ, 𝑝⃗)} 

• Topology B: {𝜌⃗,(ℓ, 𝑝⃗)}
Topology A is a sub-topology of topology B 
if and only if there exists a special linear 
transformation

ℓ → ℓ- = 𝑀./0 ⋅ ℓ + 𝑀120 ⋅ 𝑝⃗
such that 

𝜌⃗+(ℓ-, 𝑝⃗) ⊆ 𝜌⃗,( ℓ, 𝑝⃗)

𝜌⃗& = ℓ − 𝑝' (, ℓ + 𝑝" + 𝑝( (, ℓ(

𝜌⃗) = ℓ(, ℓ − 𝑝" (, ℓ − 𝑝" − 𝑝( (, ℓ − 𝑝" − 𝑝( − 𝑝' (

𝜌⃗& G
ℓ→ℓ,-!,-"

= (ℓ − 𝑝" − 𝑝( − 𝑝')(, ℓ(, (ℓ − 𝑝" − 𝑝()( ⊂ 𝜌⃗)

ℓ → ℓ − 𝑝" − 𝑝(

𝑀%./ = 1 , 	 𝑀01/ = (−1 −1 0)

[Dave, Torres Bobadilla, 2024]
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Topology Mapping: 
Symanzik Polynomials

In Feynman Parameters, our Feynman Integral 
takes the form
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𝐹 and 𝑈 are Symanzik, graph-theoretic 
polynomials, which are independent of loop 
momenta shifts.
In this framework a topology is defined by 
{𝑁, 𝑈, 𝐹}.

𝑈& = 𝑥" + 𝑥( + 𝑥'	, 	 𝐹& = 𝑠𝑥(𝑥'	

𝑈) = 𝑥" + 𝑥( + 𝑥' + 𝑥2	, 	 𝐹) = 𝑠	𝑥"𝑥' + 𝑡	𝑥(𝑥2	

𝑠 = 𝑝" + 𝑝( (, 	𝑡 = 𝑝( + 𝑝' (

[Lee, Pomeransky, 2013]
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Spanning Cuts
[Kira]



Spanning Cuts: What is a cut?
Loosely speaking, cutting a propagator means 
enforcing that this propagator is on-shell

1
𝜌#
→ 𝛿(𝜌#)

For squared propagators this is more complex, 
but can be achieved through using IBPs.
If a cut propagator does not appear as a 
denominator in a Feynman Integral, this integral 
is zero on the cut.
Cuts commute with IBPs.

𝐼T = 	5
*
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Spanning Cuts: IBPs with Cuts
We can consider our previous IBP system on a cut 𝐶, by making the change

𝐼 𝑛#, … , 𝑛$ → 𝐼T 𝑛#, … , 𝑛$ = C𝐼 𝑛#, … , 𝑛$ , 𝑛* < 0	∀	𝑖 ∈ 𝐶
0, 	 otherwise

The IBP Equations will therefore become

0 = 5
*

(𝛼* + 𝛽* ⋅ 𝑛)𝐼 𝑛 + 𝛾⃗* ⇒ 0 =5
*

(𝛼* + 𝛽* ⋅ 𝑛)𝐼T[𝑛 + 𝛾⃗*]

This means we can remove a lot of variables/equations from our system.



Spanning Cuts: Finding a Spanning Set

= 	 𝑐" +	 𝑐( +	 𝑐'

= 	 𝑐" +	 𝑐(

= 	 𝑐" +	 𝑐'



Syzygies

[Blade, NeatIBP]



Syzygies: Reducing Size of System
When generating IBP identities using the Laporta approach, the derivative acting on 
the propagators will usually give rise to integrals with a larger value of 𝑛# than the seed 
integral
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Syzygies: Where do they come in?
Let’s expand 𝑣;

< = 𝑃;5 𝜌 𝑞5
<, then the condition becomes

𝑃;5 𝜌 𝑞5
< 𝜕
𝜕ℓ;

< 𝜌. = 𝑓. 𝜌 𝜌.
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This is a Syzygy Equation over a Module 𝑀, we can use Singular to find the solutions.

𝑐9𝑀 = 0, 𝑀 =
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𝜕ℓ"
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⋮ ⋱ ⋮
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: 𝜕𝜌"

𝜕ℓ#
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−𝜌" … 0
⋮ ⋱ ⋮
0 ⋯ −𝜌;
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𝑃"" 𝜌
⋮

𝑃#.#<$ 𝜌
𝑓" 𝜌
⋮
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Summary
• Lots of new and exciting advancements being made in the world of 

IBPs
• By combining all these different ideas, we can push the state-of-

the-art further and acquire more precise calculations

Ongoing Questions
• Syzygy Selection: Once we have generate syzygy solutions, how 

do we choose which ones are necessary for an IBP reduction?
• Seeding Choices: Once we have a set of IBP Identities, how do we 

find the minimal amount of seed integrals necessary for a 
reduction?



Extra Slides



Topology Mapping: 
Sub-Topologies

𝑝"

𝑝( 𝑝'

ℓ

• Topology A: {𝑁+, 𝑈+, 𝐹+} 
• Topology B:	{𝑁,, 𝑈,, 𝐹,}
Topology A is a sub-topology of topology B if 
and only if 𝑁, ≥ 𝑁+ and there exists some 
set of 𝑁, − 𝑁+ integers 𝑅 and some 
permutation matrix 𝑃 such that

𝑈+ 𝑃𝑥⃗ = 𝑂 𝑈, 𝑥⃗ 7
2(→3,	.∈A

𝐹+ 𝑃𝑥⃗ = 𝑂 𝐹, 𝑥⃗ 7
2(→3,	.∈A

𝑂 is an ordering function for the variables 𝑥⃗

𝑅 = 2 𝑃 =
0 1 0
1 0 0
0 0 1

𝑈& 𝑃𝑥⃗ = 𝑥( + 𝑥" + 𝑥' = 	𝑈) 𝑥⃗ G
1$→4,	%∈A

𝑈& = 𝑥" + 𝑥( + 𝑥'	, 	 𝐹& = 𝑠𝑥(𝑥'	

𝑈) = 𝑥" + 𝑥( + 𝑥' + 𝑥2	, 	 𝐹) = 𝑠	𝑥"𝑥' + 𝑡	𝑥(𝑥2	

𝑠 = 𝑝" + 𝑝( (, 	𝑡 = 𝑝( + 𝑝' (

𝐹& 𝑃𝑥⃗ = 𝑠𝑥"𝑥' = 	𝐹) 𝑥⃗ G
1$→4,	%∈A



Spanning Cuts: Finding a Spanning Set
A zero sector is one where the equation below has a 𝑧-independent 
solution for 𝑘$.

1
$

𝑘$𝑥$
𝜕
𝜕𝑥$

(𝑈 + 𝐹) = 𝑈 + 𝐹

Once one has determined all the non-zero sectors 𝑆% %"#,…,|)|, the 
set of spanning cuts is the minimal set of cuts 𝐶% %"#,…, *  such that

∀	𝑆%: 	∃	𝐶+|𝐶+ ⊆ 𝑆%


