Progress on three-loop four-point integrals with one massive leg

Scattering amplitudes @ Liverpool

Based on [2410.19088], [2410.22465] and ongoing work with Cesare Carlo Mella and Petr Jakubčík

Jungwon Lim

(1) Phenomenology (Higgs plus jet)

mediated by top quark

For percentage level precision, we need <u>N3LO</u>

 H_{ggg} amplitudes

(2) Hidden structure

• C_2 cluster algebra, extended-Steinmann-like condition

 $\alpha = \{z_1, z_2, 1 - z_1 - z_2, 1 - z_1, 1 - z_2, z_1 + z_2\}$

 $\tilde{A}_i \cdot \tilde{A}_j = 0 \Longrightarrow \dots \otimes \alpha_i \otimes \alpha_j \otimes \dots$ for $i, j \in \{4, 5, 6\}$ with $i \neq j$

[Chicherin, Henn, Papathanasiou 2020] [Dixon, McLeod, Wilhelm 2020]

 $\alpha = \{z_1, z_2, 1 - z_1 - z_2, 1 - z_1, 1 - z_2, z_1 + z_2, 1 - 2z_1 + z_1^2 - z_2, z_1 - z_1^2 - z_2\}$

(2) Hidden structure

Antipodal duality \bullet

[Dixon, Gürdoğan, Liu, McLeod, Wihlem 2022]

[Dixon, Gürdoğan, McLeod, Wihlem 2021]

Maximal transcendentality conjecture \bullet

(2) Hidden structure

[Bern's talk in Snowmass 2022] [McLeod's talk in Galaxy meets QCD 2024]

[Gehrmann, Henn, Jakubčík, JL, Mella, Syrrakos, Tancredi, Torres Bobadilla 2024]

Integral Families

		# MI
	A1	83
	<u>A2</u>	100
	<u>A3</u>	80
	B1	150
A3 A2	B3	90
	<u>B4</u>	143
	<u>B5</u>	70
13	<u>B6</u>	150
t tr ϕ° form factor	<u>B7</u>	89
[Di Vita et al 2014]	E1	166
	E2	117
A1	F1	214
	G1	254
	I 2	305
6 E2 [Canko & Syrrakos :	2021] (Family :	reducible top sector)

Differential equation method

Building canonical differential equations

[Henn 2013]

Good choice of basis for Feynman integrals can significantly simplify the computation of differential equation.

$$d\vec{f}(\vec{x},\epsilon) = \epsilon \left(d\tilde{A}\right) \vec{f}(\vec{x};\epsilon), \text{ with } \tilde{A} = \left[\sum_{k} A_k \log \alpha_k(x)\right]$$

- Subsector : DlogBasis, Mapping from other families, loop-by-loop approach [Wasser 2022] [Flieger, Torres Bobadilla, 2022]

- Topsector : Matrix rotation, loop-by-loop approach

By FiniteFlow, Kira [Peraro, 2019] [Klappert, Lange, Maierhöfer, Usovitsch, 2020]

Iterated integrals

$$\vec{f}(\vec{x},\epsilon) = \mathbb{P} \exp\left[\epsilon \int_{\gamma} d\tilde{A}\right] \vec{f}_0(\epsilon)$$
 where $\vec{f}_0(\epsilon)$ is a bound

 $\gamma^*(\omega_i) = k_i(t) dt \quad \text{function } k_i \text{ are defined by pulling back the 1-form } \omega_i \text{ to the interval } [0,1]$ An ordinary line integral is given by $\int_{\gamma} \omega_1 = \int_{[0,1]} \gamma^*(\omega_1) = \int_0^1 k_1(t_1) dt_1$ Iterated integral of $\omega_1 \dots \omega_n$ along γ is defined by $\int_{\gamma} \omega_1 \dots \omega_n = \int_{0 \le t_1 \le \dots \le t_n \le 1} k_1(t_1) dt_1 \dots k_n(t_n) dt_n$ [Chen 1977]

If the alphabet is rational functions, one can write the answer in terms of Goncharov polylogarithms

$$G(\overrightarrow{a}_{n};z) \equiv G(\overrightarrow{a}_{1},\overrightarrow{a}_{n-1};z) \equiv \int_{0}^{z} \frac{dt}{t-a_{1}} G(\overrightarrow{a}_{n-1};t)$$

with
$$G(a_1; z) = \int_0^z \frac{dt}{t - a_1}$$
 and $G(\overrightarrow{0}_n; z) \equiv \frac{1}{n!} \log^n(z)$

ndary vector

Function space of 3loop integrals

$$\vec{\alpha} = \{p_4^2, s, t, p_4^2 - s - t, p_4^2 - s, p_4^2 - t, s + t, \frac{(p_4^2 - s - t)s - R}{(p_4^2 - s - t)s + R}, \frac{st - R}{st + R}\}$$
with $R = \sqrt{-p_4^2 s (p_4^2 - s - t)t}$
20 letters (including kinematic crossings)
Simple planar letters
New letter types

$$\{x, y, z, 1 - x, 1 - y, 1 - z\}$$

 l_{1-6}

- Parabolic letter : $x^2 x + y$

$$x = \frac{-s}{-p_4^2}, y = \frac{-t}{-p_4^2}, z = \frac{-p_4^2 + s + t}{-p_4^2}$$

Fixing boundary constants

At each segment, your "effective" alphabet is only rational. $\overline{\alpha}_t = \{t, t - \frac{1}{2}, t - 1, t - \frac{1}{2}, t - \frac$

segment	start-/end-point	$x(\delta,t)$	$y(\delta,t)$
Ι	$P_1 \rightarrow P_2$	t	δ
II	$P_2 \rightarrow P_3$	$1 - \delta \left[(1-t)^2 + t^2 \right]$	δt^2
III	$P_3 \rightarrow P_4$	$1-t-\delta$	t
IV	$P_4 \rightarrow P_5$	$\delta(1-t)^2$	$1 - \delta \left[(1-t)^2 + t^2) \right]$
V	$P_5 \rightarrow P_6$	δ	1-t
VI	$P_6 \rightarrow P_7$	δt^2	$\delta(1-t)^2$
VII	$P_7 \rightarrow P_8$	$-t(1-\delta)$	t
VIII	$P_8 \rightarrow P_9$	$(-1+t) \cup t$	$1-\delta$
IX	$P_9 \rightarrow P_{10}$	$1-\delta$	1-t

$$\vec{\alpha}_{t} = \{t, t - \frac{1}{2}, t - 1, t - \frac{e^{i\pi/4}}{\sqrt{t}}, t - \frac{e^{-i\pi/4}}{\sqrt{t}}\}$$

Computing tr ϕ^3 form factor

 $\mathscr{G}_{3}^{(3)} = c_1 ut[Ax123,1] + c_2 ut[Ax123,2] + \dots$ c_1, c_2, \ldots are rational numbers!

[Henn, JL, Torres Boba

			Orde	ering			
Family	123	132	213	231	312	321	Т
Α	78	73	46	71	44	40	3
E1	12	10	11	10	11	10	(
E2	23	20	18	19	18	14	1
F1	32	26	28	22	23	19	1
I2	2	0	0	0	0	0	

dilla 2024]
otal
52
64
12
50 2
<i></i>

$$\mathscr{G}_{2}^{(3)} = c_1 ut[Ax123,1] + c_2 ut[Ax123,2] + \dots$$

 c_1, c_2, \dots are rational numbers!

	_	
	_	
2		
-		
-		
		-
		-
EŻ		

Our function space is the vector space of transcendental function

We solve differential equations in canonical form and the solution can be expressed by Chen iterated integrals

$$I(\omega_1, \dots, \omega_n; \vec{x}) = \int_{\gamma} \omega_1 \omega_2 \cdots \omega_n, \qquad I(; \vec{x}) = 1,$$

where $\omega_i = \omega_i(\vec{x})$ are differential forms in the kinematic invariants and $\gamma = \gamma(\vec{1}_0, \vec{x})$ is a curve connecting the base point $\vec{1}_0$ to a generic kinematic point \vec{x} . Length n iterated integral has transcendental weight n

and we also assign weight -1 to ϵ .

$$= \frac{2}{9} + \epsilon \left(-\frac{2}{3}I(\omega_1) - \frac{2}{3}I(\omega_2) \right) + \epsilon^2 \left(\frac{8\pi^2}{27} - \frac{2}{3}I(\omega_1, \omega_4) + 2I(\omega_1, \omega_1) + 2I(\omega_1, \omega_2) + 2I(\omega_2, \omega_1) - \frac{2}{3}I(\omega_2, \omega_5) + 2I(\omega_2, \omega_2) \right) + \mathcal{O}(\epsilon^3)$$

Same definition can be extended to transcendental number $\xi_n = \pi^2, \zeta_n, \dots$, which correspond to special values of the iterated integrals,

Master integrals are not the minimal basis

The basis of our space is $b_{\mathcal{T}_{\omega}} = \{e^{-a}\xi_n^b I(\omega_1, \dots, \omega_c; \vec{x})\}$, with weight w = a + nb + c

Scattering amplitudes truncated at an ϵ order containing functions of weight at most w are combinations of some set of transcendental functions with algebraic functions as prefactors,

[[]Jakubčík @HP2 2024]

$$\operatorname{Rank}(S) \le n_{\operatorname{MI}} \le \operatorname{dim}\left(\mathscr{T}_{\omega}\right)$$

We can write the full transformation T' as an invertible matrix over numbers,

$$\vec{J}_{\omega} = T' \cdot \begin{pmatrix} b_{\mathcal{M}_{\omega}} \\ \vec{0}_{\omega} \end{pmatrix}$$

 $b_{\mathcal{M}_{\omega}}$: Rank (S) vector

Further minimization using physical properties

$$\vec{J}_{\omega} = T' \cdot \begin{pmatrix} b_{\mathcal{M}_{\omega}} \\ \vec{0}_{\omega} \end{pmatrix} \qquad b_{\mathcal{M}_{\omega}} : \operatorname{Rank}(S) \text{ vector}$$

$$\mathscr{M}_{\omega} = A_{\parallel,\omega} \bigoplus A_{\perp,\omega}$$

Physical Unphysical

Grading : Organizing the functions in \mathscr{M}_{ω} so that $A_{\parallel,\omega}$ and $A_{\perp,\omega}$ does not mixed All the components of $b_{\mathscr{M}_{\omega}}$ are independent. \longrightarrow No further cancellation between the functions.

We can remove the component that violates the constraints from physics.

$$\begin{pmatrix} \vec{\psi}_w \\ \vec{0}_w \end{pmatrix} = \begin{pmatrix} T'' \\ & \mathbb{I} \end{pmatrix} \cdot (T')^{-1} \cdot \vec{J}_w$$
$$\equiv T \cdot \vec{J}_w ,$$

Higgs plus jet amplitudes in leading color

13812 seemingly different canonical combination

- The leading color terms in the color expansion are $N^3, N_f N^2, N_f^2 N \text{ and } N_f^3$
- The terms proportional to $N_{\!f}^2$ and $N_{\!f}^3$ contain only planar letter l_{1-6}

	$ig egin{array}{c} \psi_1 \ -\psi_3 \end{array}$	$\psi_4 \ -\psi_9$	$ig \psi_{10}\-\psi_{18}$	$\psi_{19} \ -\psi_{24}$	$\psi_{25} \ -\psi_{36}$	$\psi_{37} \ -\psi_{51}$	$\psi_{52} \ -\psi_{63}$	$\psi_{64} \ -\psi_{93}$	$egin{bmatrix} \psi_{94} \ -\psi_{111} \ \end{pmatrix}$	$\psi_{112} \ -\psi_{1281}$	ψ_{12}
equals FF in sYM											1
violates (3.13)			*	*		*	*		1		
satisfies $(3.14, 3.16)$	1	\checkmark	1	✓	1	1	1	✓	1	1	1
l_{7-20} appears	1	✓	1	1	✓	1	1	✓			
• from $\mathcal{O}(\epsilon^4)$	1	\checkmark									
\hookrightarrow only parabolic		\checkmark									
\hookrightarrow also roots	1										
• from $\mathcal{O}(\epsilon^5)$			1	✓	✓						
\hookrightarrow only parabolic					✓						
\hookrightarrow also hyperbolic			1	✓							
\hookrightarrow also roots			1								
• from $\mathcal{O}(\epsilon^6)$						1	✓	1			
\hookrightarrow only parabolic								1			
\hookrightarrow also hyperbolic						1	1				
\hookrightarrow also roots						1					

82

Higgs plus jet amplitudes in leading color

- The N^3 , $N_f N^2$ terms contain non-planar topologies.

Ex) Hggg amplitudes

$$\begin{split} \alpha^{(3)}|_{N^{3}} &= \epsilon^{-6} \left[+ \frac{1746}{48841} \epsilon^{2} \psi_{4} + \frac{22}{289} \epsilon^{2} \psi_{6} + \frac{10}{169} \epsilon^{2} \psi_{7} \right. \\ &+ \frac{11}{18} \left(\frac{37}{3} \epsilon \, \psi_{25} + 5\epsilon \, \psi_{26} + 6\epsilon \, \psi_{27} + \frac{11}{2} \epsilon \, \psi_{28} + 8\epsilon \, \psi_{29} \right. \\ &- 7\epsilon \, \psi_{30} - 5\epsilon \, \psi_{31} - \frac{5}{2} \epsilon \, \psi_{32} + 2\epsilon \, \psi_{33} - \frac{22}{3} \epsilon \, \psi_{34} + 2\epsilon \, \psi_{34} + 2\epsilon \, \psi_{36} + \text{terms with letters } l_{1-6} \text{ only} \\ &+ \mathcal{O}(\epsilon) \,. \end{split}$$

	ψ_1	$oldsymbol{\psi_4}$	ψ_{10}	ψ_{19}	ψ_{25}	ψ_{37}	ψ_{52}	ψ_{64}	ψ_{94}	ψ_{112}
	$\left -\psi_{3}\right $	$-\psi_9$	$ -\psi_{18} $	$-\psi_{24}$	$-\psi_{36}$	$-\psi_{51}$	$-\psi_{63}$	$-\psi_{93}$	$-\psi_{111}$	$-\psi_{128}$
equals FF in sYM										
violates (3.13)			*	*		*	*		1	
satisfies $(3.14, 3.16)$	1	1	1	1	✓	1	1	✓	1	1
l_{7-20} appears	1	1	1	1	✓	1	1	1		
• from $\mathcal{O}(\epsilon^4)$	1	1								
\hookrightarrow only parabolic		1								
\hookrightarrow also roots	1									
• from $\mathcal{O}(\epsilon^5)$			1	1	✓					
\hookrightarrow only parabolic					✓					
\hookrightarrow also hyperbolic			1	\checkmark						
\hookrightarrow also roots			1							
• from $\mathcal{O}(\epsilon^6)$						1	1	✓		
\hookrightarrow only parabolic								\checkmark		
\hookrightarrow also hyperbolic						1	1			
\hookrightarrow also roots						1				

 ψ_{35})

Higgs plus jet amplitudes in leading color

- We also checked the square root letter and hyperbolic letter drops out in the finite remainder
- Only six parabolic letters survive among the new letters
- In Hggg amplitude, no new letter appears at weight 6 (only appears at weight 4 & 5)

Hint to maximal transcendentality conjecture

$$\alpha^{(3)}\Big|_{N^3} = \mathscr{G}_2^{(3)} + \sum_{i=1}^{1281} c_i \psi_i \text{ with } c_i = \mathscr{O}(\epsilon)$$

- In $Hgq\bar{q}$ amplitudes, the new parabolic letter appears also at weight 6

Potential for bootstrap approach?

Result

• New letters ω_{new} shouldn't appear in order less than $e^{2L} \longrightarrow Checked and later can be used for reconstruction$

• Adjacency conditions hold at least for the functions containing the new letters $M_i \cdot M_j = M_j \cdot M_i = 0, \quad i, j \in \{4, 5, 6\}$

3-point tr (ϕ^2) form factor sub-leading color

	# MI(#topsect
F2	136(4)
G2	174(4)
G3	176(4)
11	277(8)
Н	371(19)

3-point tr (ϕ^2) form factor sub-leading color

	# MI(#topsect
F 2	136(4)
G 2	174(4)
G 3	176(4)
 ✓ I1 	277(8)
Н	371(19)

3-point tr (ϕ^2) form factor sub-leading color

	# MI(#topsect
F 2	136(4)
G 2	174(4)
G 3	176(4)
1 1	277(8)
Н	371(19)

Max cut	Missing part
0	Subsector in canonical form

Summary & Outlook

- We compute three-loop tr ϕ^2 and tr ϕ^3 three-point form factor analytically with first-principle method computing Feynman integrals.
- By grading the functions, one can work with more compact basis.

<u>To do</u> :

- Getting full expression of Higgs + jet amplitudes profited from the graded functions. numerical IBP reduction off the cut **Bottleneck :** Reconstruction of the coefficients (harder than form factor as it's not UT)
- Getting full expression of subleading three-loop three-point tr ϕ^2 form factor by completing the family H

Thank You!