Scattering Market Scattering Complitudes

26-28 March 2025

Practicalities

LEVERHULME TRUST_____

Funding

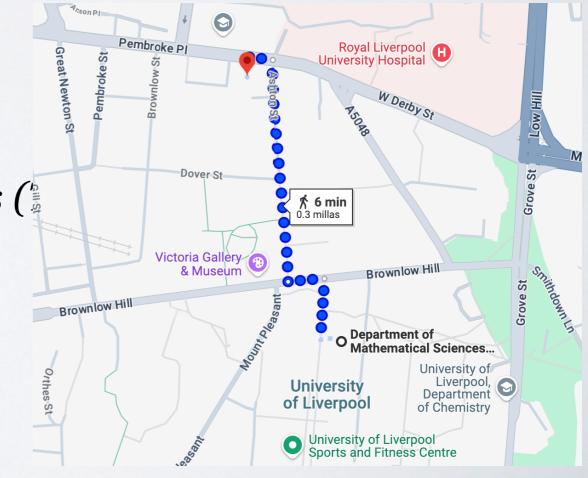
School of physical sciences
 Leverhulme grant LIP-2021-01
 Local support by Math & Physics department
 Lauren Burton - Julie Clark - Joanna Seed

Location

Department of Mathematical Sciences (Today)
Cedar House (Thursday and Friday)

Practicalities

LEVERHULME TRUST_____



Search Funding

School of physical sciences Leverhulme grant LIP-2021-01 Local support by Math & Physics department Lauren Burton - Julie Clark - Joanna Seed

Location

Department of Mathematical Sciences (Cedar House (Thursday and Friday)

Efficient evaluation of multi-loop scattering amplitudes in gauge theories ... but not a regular workshop

Motivate collaborative efforts State-of-the-art calculations From high-energy to low-energy physics

An Analytic Computation of Three–Loop Five–Point Feynman Integrals

Yuanche Liu⁽⁰⁾,^{1,*} Antonela Matijašić,^{2,†} Julian Miczajka,^{3,‡} Yingxuan Xu,^{4,§} Yongqun Xu⁽⁰⁾,^{5,¶} and Yang Zhang⁽⁰⁾,^{5,},^{**}

Analytic two-loop amplitudes for $q\bar{q} \to \gamma\gamma$ and $gg \to \gamma\gamma$ mediated by a heavy-quark loop

Matteo Becchetti,^a Federico Coro,^{b,c} Christoph Nega,^d Lorenzo Tancredi,^d Fabian J.

One-Loop QCD Corrections to $\bar{u}d \rightarrow t\bar{t}W$ at $\mathcal{O}(\varepsilon^2)$

Matteo Becchetti,^a Maximilian Delto,^{b,c} Sara Ditsch,^{b,d} Philipp Alexander Kreer,^b Mattia Pozzoli,^a Lorenzo Tancredi^b

Two-loop light-quark Electroweak corrections to Higgs boson pair production in gluon fusion

Marco Bonetti,^{*a,b*} Philipp Rendler,^{*b*} and William J. Torres Bobadilla^{*c*}

Feynman integral reduction: balanced reconstruction of sparse rational functions and implementation on supercomputers in a co-design approach

Alexander Smirnov¹ and Mao $Zeng^2$

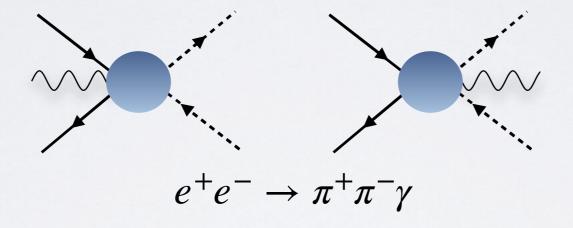
LINE: Loop Integrals Numerical Evaluation

Renato Maria Prisco,^a Jonathan Ronca,^b Francesco Tramontano^a

Graded transcendental functions: an application to four-point amplitudes with one off-shell leg

Thomas Gehrmann,^a Johannes Henn,^b Petr Jakubčík,^a Jungwon Lim,^b Cesare Carlo Mella,^c Nikolaos Syrrakos,^c Lorenzo Tancredi,^c and William J. Torres Bobadilla^d

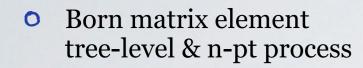
Feynman Integral Reductions by Intersection Theory with Orthogonal Bases and Closed Formulae


Giulio Crisanti,^{*a,b,c*} Sid Smith^{*a,b,d*}

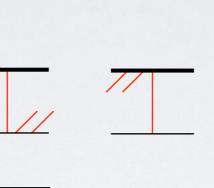
Strategies of our group

- Study analytic properties of Feynman integrals Grading of functions :: analytic cancellations at integral level
- Fast numerical evaluation Compute what we really want to evaluate
- Careful IBP generation Reconstruct amplitudes and/or ε-expansion

Low-energy physics


- Unravel physical properties of the muon $a_{\mu} = g 2$
- Clean up tensions between experimental efforts through theoretical predictions
- Make use of $e^+e^- \rightarrow$ hadrons experiments to extract a_{μ}^{HVP}

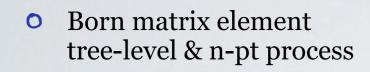
- Main focus on radiative return experiments
- Improve theoretical predictions
 -> From NLO to NNLO (and beyond?)


Towards $e^+e^- \rightarrow F^+F^-\gamma$ @ NNLO

Anatomy @ LO

Search Anatomy @ NLO

- Real contribution treelevel (*n*+1)-particles
- Virtual Contribution one-loop (*n*+1)-particles


 $A_n^{(1),D=4}(\{p_i\}) = \sum_{K_4} C_{4;K4}^{[0]} + \sum_{K_3} C_{3;K3}^{[0]} + \sum_{K_2} C_{2;K2}^{[0]} + \sum_{K_1} C_{1;K1}^{[0]} \bigcirc$

Automated one-loop Feynman integral & phase-space evaluation
 IR subtraction schemes under control

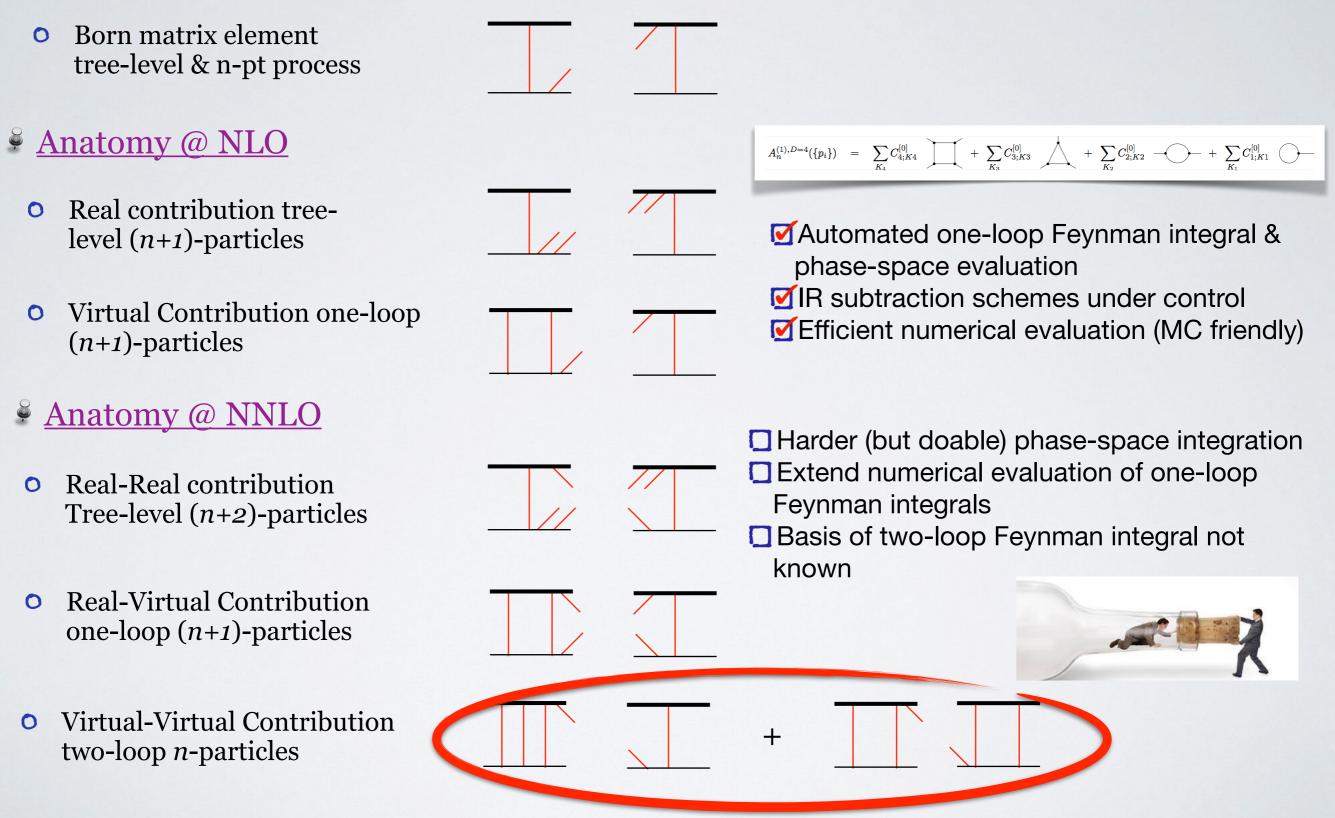
Efficient numerical evaluation (MC friendly)

Towards $e^+e^- \rightarrow F^+F^-\gamma$ @ NNLO

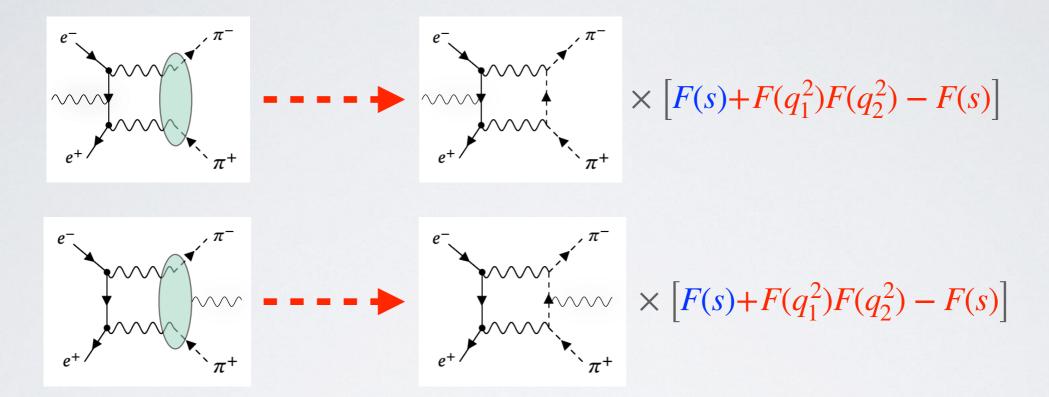
Anatomy @ LO

Anatomy @ NLO

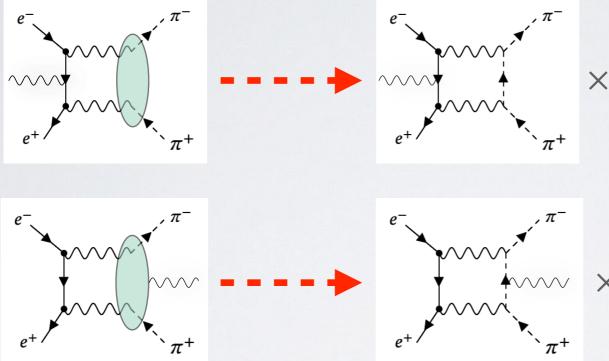
- Real contribution treelevel (*n*+1)-particles
- Virtual Contribution one-loop (*n*+1)-particles


Anatomy @ NNLO

- Real-Real contribution Tree-level (*n*+2)-particles
- Real-Virtual Contribution one-loop (*n*+1)-particles
- Virtual-Virtual Contribution two-loop *n*-particles

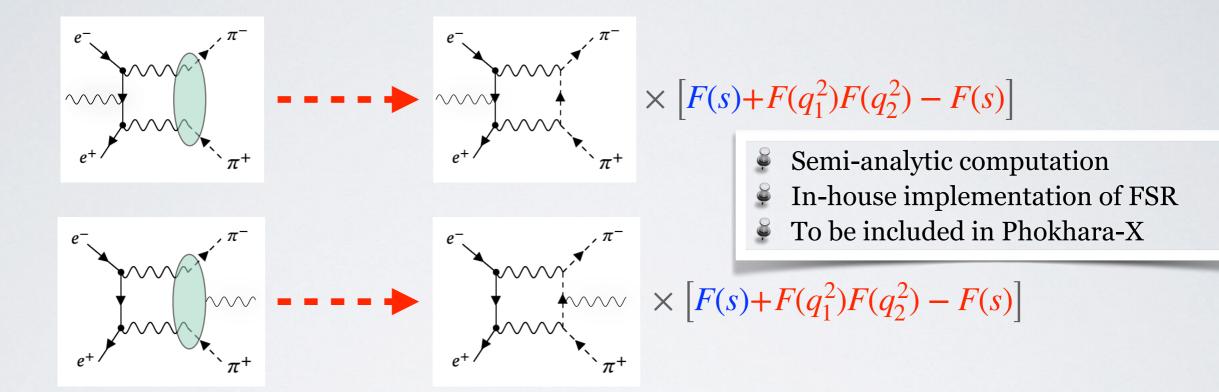


Towards $e^+e^- \rightarrow F^+F^-\gamma$ @ NNLO

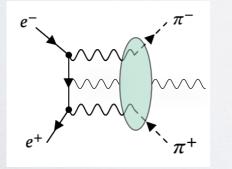

Anatomy @ LO

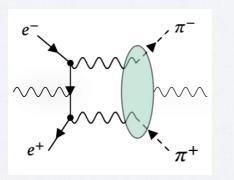
$$e^+e^- \rightarrow \pi^+\pi^-(\gamma)$$

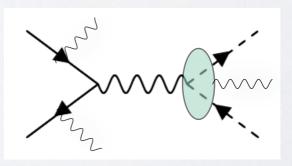
 $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$

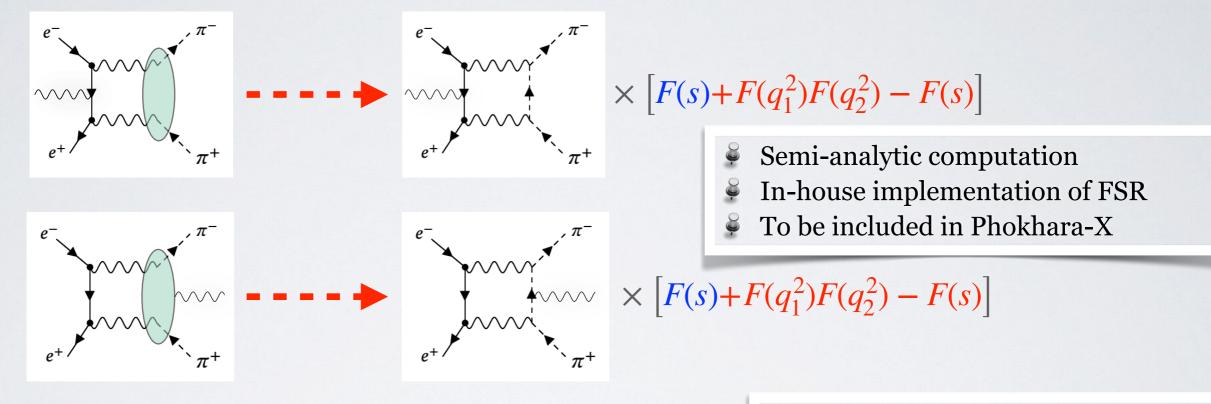


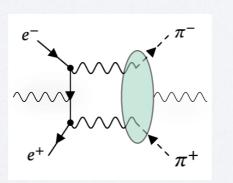
$$\left[\frac{F(s) + F(q_1^2)F(q_2^2) - F(s)}{F(s)} \right]$$


- Semi-analytic computation
- In-house implementation of FSR
- Solution To be included in Phokhara-X

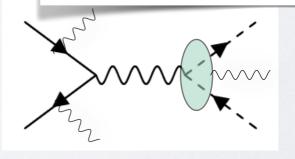

$$\times \left[F(s) + F(q_1^2)F(q_2^2) - F(s) \right]$$


 $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$


Same treatment at NNLO (VV, VR, RR)?

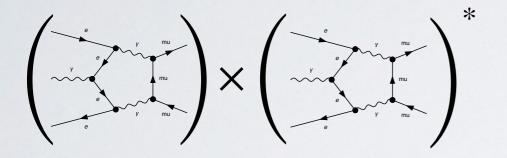


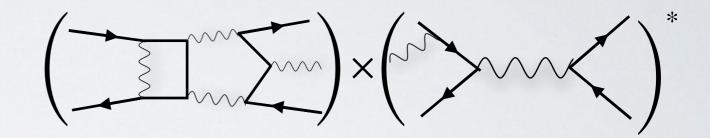
 $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$



Same treatment at NNLO (VV, VR, RR)?

e⁻, π⁻ e⁺, π⁺


- Fully numerical computation
- 🗳 Use Collier
 - Focus on RR & RV (at the moment)



Radiative return processes @ NNLO

[§] Ultimate goal :: efficient evaluation of $e^+e^- \rightarrow \mu^+\mu^-\gamma$ and $e^+e^- \rightarrow \pi^+\pi^-\gamma$

Virtual-Virtual Contribution

Extend evaluation of one-loop Feynman integrals

Compute two-loop Feynman integrals

Strategy :: chop problem into smaller pieces

☆ Divide the amplitude in terms of gauge invariant pieces
 ☆ Take into account the formal properties of Feynman integrals
 ☆ Make use of simple variables for their calculation
 ☆ Profit from relations at integrand and integral level
 ☆ Get experimental insights

Radiative return processes @ NNLO

Radiative return processes @ NNLO

Evaluation of Feynman integrals by the method of differential equations

$$\partial_x \vec{I}(\vec{x};\epsilon) = A_x(\vec{x};\epsilon) \vec{I}(\vec{x};\epsilon)$$

 \vec{x} (kinematic invariants)

When possible find a canonical basis $\vec{J} = R\vec{I}$ [Henn 2013]

Solve DEQ along the path [Moriello 2019]

 \mathbf{M} Get boundary constants \vec{J}_0 analytically or numerically [AMFlow 2017]

Account for analytic continuations when crossing regions

Currently working on C++ implementation Input :: DEQ+ boundary constants

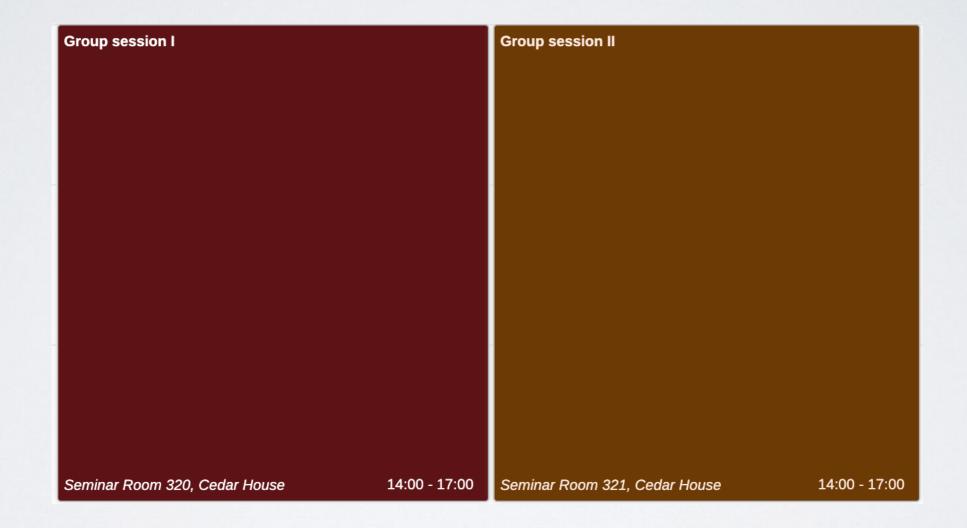
 \vec{x}_{f}

* Thursday "late" morning

Moderated discussion	
Forshall Room (Room 427), Cedar House	11:00 - 12:45

* Wednesday afternoon

From Impossible to Doable: Complete Function Space for Two-Loop Six-Point Scattering Amplitudes	Antonela Matijašić
MATH-103, Department of Mathematical Sciences	14:30 - 15:00
Progress on two-loop integrals for top-pair production plus a W boson	Mattia Pozzoli
MATH-103, Department of Mathematical Sciences	15:00 - 15:30
ϵ -factorised form and numerical evaluation for elliptic Feynman integrals in diphoton production	Federico Coro
MATH-103, Department of Mathematical Sciences	15:30 - 16:00
Tea & coffee	
Department of Mathematical Sciences	16:00 - 16:30
Department of Mathematical Sciences Efficient supercomputer-scale IBP reduction for Feynman integrals	16:00 - 16:30 Mao Zeng
Efficient supercomputer-scale IBP reduction for Feynman integrals	Mao Zeng
Efficient supercomputer-scale IBP reduction for Feynman integrals MATH-103, Deparment of Mathematical Sciences	Mao Zeng 16:30 - 17:00
Efficient supercomputer-scale IBP reduction for Feynman integrals MATH-103, Deparment of Mathematical Sciences Loop Integral Numerical Evaluation with LINE	Mao Zeng 16:30 - 17:00 Jonathan Ronca


* Thursday "early" morning

Modern techniques for Integration-by-parts reduction	Sid Smith
Forshall Room (Room 427), Cedar House	09:00 - 09:25
Progress on three-loop four-point integrals with one massive leg	Jungwon Lim
Forshall Room (Room 427), Cedar House	09:30 - 09:55
Electroweak corrections to Higgs boson pair production in gluon fusion	<i>Marco Bonetti</i>
Forshall Room (Room 427), Cedar House	10:00 - 10:25

* Thursday "late" morning

Moderated discussion	
Forshall Room (Room 427), Cedar House	11:00 - 12:45

* Thursday afternoon :: core of the workshop

* Friday morning

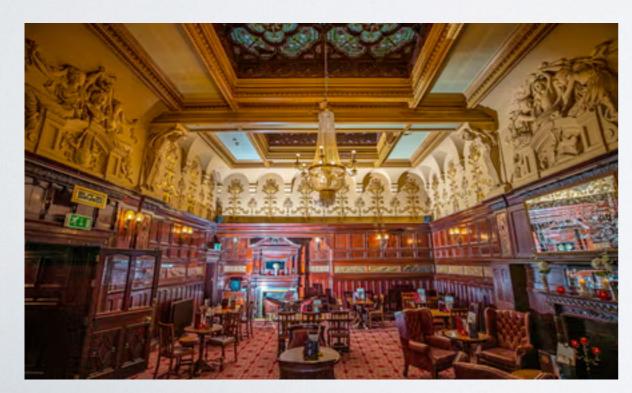
✓ Discussion on automated tools (Line, Fuel, ...)
 ✓ New integration methods for Feynman integrals
 ✓ Look into $e^+e^- \rightarrow \mu^+\mu^-\gamma$ ✓ ...

Das Ende ist der Anfang

Let's profit from being in the same place these days
 <u>Remember</u>: not a standard workshop
 Promote collaborations as much as we can
 Let's boost new understanding in the evaluation of Feynman integrals.

Das Ende ist der Anfang

Let's profit from being in the same place these days
 <u>Remember</u>: not a standard workshop
 Promote collaborations as much as we can
 Let's boost new understanding in the evaluation of Feynman integrals.



Social activities

Lunches @ 1:00 PM Thursday: Victoria Gallery & Museum

Conference dinner:
<u>The Philharmonic Dining Rooms</u>

Friday: Bertie and Bella's (Vine court)

Networking activity:
<u>The Blackburne Arms Gastro Pub</u>

