Rethinking Muon g - 2/EDM at J-PARC: The Change, and The Challenges

Cedric Liverpool Muon Group Meeting

March 2025

Rethinking Muon g - 2/**EDM at J-PARC: The Change, and The Challenges**

This was my PhD project nearly 3 years ago:

- Things evolve rapidly I may not cover the very latest updates;
- I am not covering all aspects but will focus on the motivation and challenges.

Rethinking Muon g - 2/EDM at J-PARC: The Change, and The Challenges

This was my PhD project nearly 3 years ago:

- Things evolve rapidly I may not cover the very latest updates;
- I am not covering all aspects but will focus on the motivation and challenges.
- The need for a new experiment a historical and technological view;
- **Muon cooling** the key to all the downstream differences;
- New ideas potential collaboration in Liverpool.

Graziano - Muon Workshop, Liverpool, Nov 2022

From muon 'g' to 'g-2'

Graziano - Muon Workshop, Liverpool, Nov 2022

History: the first measurement of g_{μ}

 1957: Garwin, Lederman, Weinrich at Nevis (Just after Yang and Lee parity violation paper - confirmation)

Generations of 'g-2' experiments at CERN have been marked by precision battles between theoretical predictions and experimental results.

Graziano - Muon Workshop, Liverpool, Nov 2022

Graziano - Muon Workshop, Liverpool, Nov 2022

Graziano - Muon Workshop, Liverpool, Nov 2022

For generations of experiments, we need to consider both systematic and statistical uncertainties.

• New experimental ideas:

The need for a new experiment: What makes a new experiment? Experiment • New experimental ideas: Theory Cassels, et al. (Liverpool) 1957 Stopped $\vec{\mu}$ from π^+ decay Counted e⁺ decays vs. time in $(\frac{\alpha}{-})^3$ + hadronic a 100.9 G *B* field. 2025 0.1 ppm? FNAL $g_{\mu} = 2.004 \pm 0.014$ 0.7% uncertainty + weak +? stopped μ then decay $\rightarrow e^+$ 2004 0.54 ppm BNL + hadronic 7.3 ppm 1969 **CERN-III** 110 MeV Muon Beam Shieldir Paraffin Wax $(\frac{\alpha}{\pi})^3$ 265 ppm 1968 **CERN-II** Layout of experimental apparatus "The value of g itself should be sought in a comparison of the precession and cyclotron frequencies of muons in a magnetic field. The two frequencies are expected to differ $(\frac{\alpha}{\pi})^2$ only by the radiative correction" → Birth of Storage Ring method! 4300 ppm **CERN-I** 1962 W. E. Bell and E. P. Hincks, Phys. Rev. 84, 1243 (1951) $(\frac{\alpha}{\pi})$ $\sigma_{a_{\mu}}/a_{\mu} = 12.4\%$ **Nevis Labs** 1957

- CERN-I: from 'g' to 'g-2' with storage ring method

The need for a new experiment: What makes a new experiment? Experiment • New experimental ideas: Theory Cassels, et al. (Liverpool) 1957 Stopped $\vec{\mu}$ from π^+ decay Counted e⁺ decays vs. time in $(\frac{\alpha}{-})^3$ + hadronic a 100.9 G *B* field. 2025 FNAL 0.1 ppm? $g_{\mu} = 2.004 \pm 0.014$ 0.7% uncertainty + weak +? stopped μ then decay $\rightarrow e^+$ 2004 **BNL** 0.54 ppm $(\frac{\alpha}{-})^3$ + hadronic 7.3 ppm 1969 **CERN-III** 110 MeV Muon Beam $(\frac{\alpha}{-})^3$ Shieldir Paraffin Wax 265 ppm 1968 **CERN-II** Layout of experimental apparatus "The value of g itself should be sought in a comparison of the precession and cyclotron frequencies of muons in a magnetic field. The two frequencies are expected to differ $(\frac{\alpha}{-})^2$ only by the radiative correction" → Birth of Storage Ring method! 4300 ppm CERN-I W. E. Bell and E. P. Hincks, Phys. Rev. 84, 1243 (1951) 1962 π $(\frac{\alpha}{-})$ $\sigma_{a_{\mu}}/a_{\mu} = 12.4\%$ **Nevis Labs** 1957 ${\cal T}$

- CERN-I: from 'g' to 'g-2' with storage ring method

An experimental trick: subtract known quantities and focus only on the components with uncertainties that need resolution.

The need for a new experiment: What makes a new experiment? Experiment • New experimental ideas: Theory $(\frac{\alpha}{-})^3$ + hadronic 2025 FNAL 0.1 ppm? How to keep the muons vertically confined? + weak +? 2004 BNL 0.54 ppm $(\frac{\alpha}{-})^3$ + hadronic 7.3 ppm 1969 **CERN-III** $(\frac{\alpha}{\pi})^3$ 265 ppm 1968 **CERN-II** $\left(\frac{\alpha}{-1}\right)^2$ 4300 ppm **CERN-I** 1962 π $(\frac{\alpha}{-})$ $\sigma_{a_{\mu}}/a_{\mu} = 12.4\%$ **Nevis Labs** 1957 ${\cal I}$

- CERN-I: from 'g' to 'g-2' with storage ring method CERN-III: magic momentum muon

The need for a new experiment: What makes a new experiment? **Experiment** • New experimental ideas: Theory $(\frac{\alpha}{-})^3$ + hadronic 2025 FNAL 0.1 ppm? + weak +? 2004 0.54 ppm BNL $(\frac{\alpha}{-})^3$ + hadronic 7.3 ppm 1969 **CERN-III** $(\frac{\alpha}{\pi})^3$ 265 ppm 1968 **CERN-II** $(\frac{\alpha}{\pi})^2$ 4300 ppm **CERN-I** 1962 $(\frac{\alpha}{\pi})$ $\sigma_{a_{\mu}}/a_{\mu} = 12.4\%$ **Nevis Labs** 1957

- CERN-I: from 'g' to 'g-2' with storage ring method
- CERN-III: magic momentum muon

The need for a new experiment: What makes a new experiment? Experiment • New experimental ideas: Theory $(\frac{\alpha}{-})^3$ + hadronic 2025 FNAL 0.1 ppm? + weak +? 0.54 ppm 2004 BNL + hadronic 7.3 ppm CERN-III 1969 **RF** field $(\frac{\alpha}{\pi})^3$ 265 ppm 1968 **CERN-II** $(\frac{\alpha}{\pi})^2$ 4300 ppm **CERN-I** 1962 $(\frac{\alpha}{\pi})$ $\sigma_{a_{\mu}}/a_{\mu} = 12.4\%$ **Nevis Labs** 1957

- CERN-I: from 'g' to 'g-2' with storage ring method
- CERN-III: magic momentum muon
- New techniques reducing systematics: Advanced detectors (tracker, laser, ...)

The need for a new experiment: What makes a new experiment? Experiment • New experimental ideas: Theory $(\frac{\alpha}{-})^3$ + hadronic 2025 FNAL 0.1 ppm? + weak +? 0.54 ppm 2004 BNL $(\frac{\alpha}{-})^3$ + hadronic 7.3 ppm **CERN-III** 1969 **RF** field $(\frac{\alpha}{\pi})^3$ 265 ppm 1968 **CERN-II** $(\frac{\alpha}{\pi})^2$ 4300 ppm **CERN-I** 1962 $(\frac{\alpha}{\pi})$ $\sigma_{a_{\mu}}/a_{\mu} = 12.4\%$ **Nevis Labs** 1957

- CERN-I: from 'g' to 'g-2' with storage ring method
- CERN-III: magic momentum muon
- New techniques reducing systematics: Advanced detectors (tracker, laser, ...)

More muons increasing the statistics!

The need for a new experiment: What makes a new experiment? Experiment • New experimental ideas: Theory J-PARC: thermal muon $(\frac{\alpha}{-})^3$ + hadronic 2025 FNAL 0.1 ppm? + weak +? 0.54 ppm 2004 BNL $(\frac{\alpha}{-})^3$ + hadronic 7.3 ppm **CERN-III** 1969 **RF** field $(\frac{\alpha}{\pi})^3$ 265 ppm 1968 **CERN-II** $(\frac{\alpha}{\pi})^2$ 4300 ppm **CERN-I** 1962 $(\frac{\alpha}{\pi})$ $\sigma_{a_{\mu}}/a_{\mu} = 12.4\%$ **Nevis Labs** 1957

- CERN-I: from 'g' to 'g-2' with storage ring method
- CERN-III: magic momentum muon
- New techniques reducing systematics:
 - Advanced detectors (tracker, laser, ...)
- More muons increasing the statistics!

The need for a new experiment: What makes a new experiment? Experiment • New experimental ideas: Theory J-PARC: thermal muon $(\frac{\alpha}{-})^3$ + hadronic 2025 FNAL 0.1 ppm? + weak +? 2004 0.54 ppm BNL $(\frac{\alpha}{-})^3$ + hadronic 7.3 ppm CERN-III 1969 **RF** field $(\frac{\alpha}{\pi})^3$ 265 ppm **CERN-II** 1968 $(\frac{\alpha}{\pi})^2$ 4300 ppm **CERN-I** 1962 $(\frac{\alpha}{\pi})$ $\sigma_{a_{\mu}}/a_{\mu} = 12.4\%$ **Nevis Labs** 1957

- CERN-I: from 'g' to 'g-2' with storage ring method
- CERN-III: magic momentum muon
- New techniques reducing systematics:
 - Advanced detectors (tracker, laser, ...)

 - J-PARC: Muon acceleration, 3D spiral injection, ...
- More muons increasing the statistics!

The need for a new experiment: What makes a new experiment? Experiment • New experimental ideas: Theory J-PARC: thermal muon $(\frac{\alpha}{-})^3$ + hadronic 2025 FNAL 0.1 ppm? + weak +? 2004 0.54 ppm BNL $(\frac{\alpha}{-})^3$ + hadronic 7.3 ppm CERN-III 1969 **RF** field $(\frac{\alpha}{\pi})^3$ 265 ppm **CERN-II** 1968 $(\frac{\alpha}{-})^2$ 4300 ppm **CERN-I** 1962 π $(\frac{\alpha}{-})$ $\sigma_{a_{\mu}}/a_{\mu} = 12.4\%$ **Nevis Labs** 1957 ${\cal I}$

- CERN-I: from 'g' to 'g-2' with storage ring method
- CERN-III: magic momentum muon
- New techniques reducing systematics:
 - Advanced detectors (tracker, laser, ...)

 - J-PARC: Muon acceleration, 3D spiral injection, ...
- More muons increasing the statistics!
 - J-PARC has the highest intensity pulsed muon beam

J-PARC Muon g - 2/EDM experiment (E34)

Muon cooling

- Surface muon (3.4 MeV, large emittance)
- \rightarrow thermal muon (0.2 eV, low emittance)

Muon LINAC

Muon acceleration to 212 MeV

3D spiral injection

- Large kick angle within a few ns
- Good injection efficiency

Storage ring

- Compact storage ring
- Tracking detector

LINAC, 400 MeV proton

Rapid Cycling Synchrotron (RCS) **3 GeV proton**, ~ 1 MW, 25 Hz

LINAC, 400 MeV proton

Rapid Cycling Synchrotron (RCS) **3 GeV proton**, ~ 1 MW, 25 Hz

LINAC, 400 MeV proton

Material and Life Science Facility (MLF)

Rapid Cycling Synchrotron (RCS) **3 GeV proton**, ~ 1 MW, 25 Hz

LINAC, 400 MeV proton

J-PARC Muon g - 2/EDM

Material and Life Science Facility (MLF)

Rapid Cycling Synchrotron (RCS) **3 GeV proton**, ~ 1 MW, 25 Hz

LINAC, 400 MeV proton

Neutrino (T2K)

J-PARC Muon g - 2/EDM

Material and Life Science Facility (MLF)

COMET ('mu2e')

Muon Beam (H-line as of Dec 2023)

Deck for **RF** power supplies

Laser room

H2 area Ultra slow **µ** production Reacceleration up to 4 MeV

Future extension to accelerate up to 212 MeV Extension building construction ongoing (Budget secured!)

H1 area MUSEUM DeeMe

S2

Laser room

Photo credit to Takayuki YAMAZAKI

Measurement Principle Muon Precession in the Magnetic Field

Measurement Principle Muon Precession in the Magnetic Field

FNAL E989

Measurement Principle Muon Precession in the Magnetic Field

Muon cooling

• The traditional muon beam can not be well-focused without an electric field;

Muon cooling the key to all the downstream dif

- The traditional muon beam can not be well-focused without an electric field;
- The muon must be <u>compact and non-divergent;</u>
- Typically with a RMS of \sim mm \rightarrow never achieved before.

Muon cooling

Muon cooling the key to all the downstream differences

emittance ~1000 π mm \cdot mrad

Muon cooling the key to all the downstream differences

emittance ~1000π mm · mrad

Ordinary flashlight

emittance 1π mm · mrad

Surface muon cooling by laser ionization of muonium (Mu) to thermal muon

Key issues in the thermal muon source

- The thermal muon per injecting surface muon is low (10^{-3}) .
- What has been achieved now (10⁻⁵) is even lower
- <u>Muonium production and laser efficiency</u> are two key weak points

Subsystem	Efficiency	Subsystem
H-line acceptance and transmission	0.16	DAW decay
Mu emission	0.0034	DLS transmission
Laser ionization	0.73	DLS decay
Metal mesh	0.78	Injection transmission
Initial acceleration transmission and decay	0.72	Injection decay
RFQ transmission	0.95	Kicker decay
RFQ decay	0.81	e^+ energy window
IH transmission	0.99	Detector acceptance of
IH decay	0.99	Reconstruction efficie
DAW transmission	1.00	

 Table 4. Breakdown of estimated efficiency.

Prog. Theor. Exp. Phys. 2019, 053C02

Key issues in the thermal muon source

- The thermal muon per injecting surface muon is low (10⁻³).
- What has been achieved now (10⁻⁵) is even lower
- <u>Muonium production</u> and <u>laser efficiency</u> are two key weak points

Steps	Efficienc
Surface muon transport	
Muon stopping in the aerogel	0.467
Muonium formation	0.52
Muonium vacuum yield	0.082
Laser ionization	1.0×10 ⁻⁵
Slow muon beam-line transport	0.651
Rate at MCP detector	0.90

ÿ	Intensity [Hz]	E34 TDR intensity [Hz]
	1.8×10 ⁶	3.2×10 ⁸
	8.4×10 ⁵	1.35×10 ⁸
	4.3×10 ⁵	7.01×10 ⁷
	3.5×10 ⁴	7.21×10 ⁶
	0.19 (244 nm, 1.5 mJ)	8.24×10⁵ (122 nm, 100 uJ)
	0.12	_
	0.1	_

Expected Sensitivity

- A TDR muon rate $3.2 \times 10^8 \mu$ /sec at the entrance at 1 MW proton power.
- thermal muon generation to reconstructed positron is 4.0×10⁻⁴.
- achieving the BNL precision of 0.45 ppm on a_{μ} .

Table 5. Summary of statistics and uncertainties.

Total number of muons in the storage magnet Total number of reconstructed e^+ in the energy window [200, 275 MeV] Effective analyzing power Statistical uncertainty on ω_a [ppb] Uncertainties on a_{μ} [ppb]

Uncertainties on EDM [$10^{-21} e \cdot cm$]

• The expected intensity of stored muon is $1.3 \times 10^5 \,\mu/sec$. Cumulative efficiency from

2-years data taking (2×10⁷ seconds, ~230 days) will give a total positron 5.7×10¹¹

Expected Sensitivity

the statistical ones.

Table 6. Estimated systmatic uncertainties on a_{μ} .

Anomalous spin precession (ω_a)		Magnetic field (ω_p)		
Source	Estimation (ppb)	Source	Estimation (ppb)	
Timing shift	< 36	Absolute calibration	25	
Pitch effect	13	Calibration of mapping probe	20	
Electric field	10	Position of mapping probe	45	
Delayed positrons	0.8	Field decay	< 10	
Diffential decay	1.5	Eddy current from kicker	0.1	
Quadratic sum	< 40	Quadratic sum	56	

• Systematic uncertainties are estimated to be less than 70 ppb - smaller than

δa_{μ} (syst.) < 70 ppb

 \rightarrow this experiment is **statistically limited**

Expected Sensitivity

TABLE II. Values and uncertainties of the \mathcal{R}'_{μ} correction terms in Eq. (4), and uncertainties due to the constants in Eq. (2) for a_{μ} . Positive C_i increase a_{μ} and positive B_i decrease a_{μ} .

Quantity	Correction terms (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)	•••	56 ↦ <36
C_{e}	489	53 → 10
C_p	180	13 → 13
C_{ml}	-11	5 → 2
C_{pa}	-158	75 ↦ 0
$f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56 ↦ 49
B_k	-27	37
B_q	-17	92
$\mu'_{p}(34.7^{\circ})/\mu_{e}$		10
m_{μ}/m_e		22
$g_e/2$	•••	0
Total systematic		157 → <64
Total fundamental factors		25
Totals	544	462

 δa_{μ} (syst.) < 70 ppb

- : Pileup, (gain, CBO)
- : residual E-fields (no Quads)
- : pitch correction
- : differential decay & (muon losses)
- : transverse muon distribution
- : probe positioning & calibration
- : kicker transients

New ideas are needed to increase the statistics!

Otherwise, the J-PARC measurement may not be very useful.

New ideas Multi-layer target for Muonium production

Current design (single-layer)

- Low Mu emission efficiency (0.0034):
 - Muon stopping (0.418)
 - ► Vacuum emission (0.060)
 - Laser spatial constraint (0.269)

Novel multi-layer target design

- Multi-layer targets stop incident muon
- Mu emits from upper and lower surfaces
- Mu confined between targets

New ideas Multi-layer target for Muonium production

It gives about 3.5 times higher yield than our current design (single-layer)

C. Zhang et al., NIMA. 1042, 167443 (2022).

New ideas Multi-layer target for Muonium production

- The extraction is turned 90 degrees, making construction more challenging.

• Another version uses multi-layers facing the incident beam, resulting in a higher yield;

muon

 \overrightarrow{z}

(4 times if 4 layers \rightarrow 8 times at max)

More new ideas and potential collaboration in Liverpool

• Can we have more innovative ideas to enhance the muon statistics? The statistical precision of the anomalous spin precession angular frequency ω_a is determined as

 $\Delta \omega_a$ ω_a

$$=\frac{1}{\omega_a\gamma\tau P}\sqrt{\frac{2}{NA^2}}$$

More new ideas and potential collaboration in Liverpool

 Can we have more innovative ideas to enhance the muon statistics? The statistical precision of the anomalous spin precession angular frequency ω_a is determined as

$$rac{\Delta \omega_a}{\omega_a}$$

- 1. Higher momentum (γ):
 - Muon acceleration (300 MeV \rightarrow 600 MeV)
 - with a higher B field ($3T \rightarrow 6T$)
- 2. Improve the polarization (P): 50% \rightarrow 75%+?
- For more details, see the next talk by Graziano.

$$=\frac{1}{\omega_a\gamma\tau P}\sqrt{\frac{2}{NA^2}}$$

Sensitivity improvement at higher energy

- Muon g-2 is a precision battle between experiments and theory.
- Muon g-2 experiments are a battle between stat and syst uncertainties.

een experiments and theory. Detween stat and syst uncertainties.

Stat. Syst.

Summary

- Muon g-2 is a precision battle between experiments and theory.
- Muon g-2 experiments are a battle between stat and syst uncertainties.
- Fermilab Muon g-2 is over:
 - The storage ring method has reached its systematic limit;
 - Not very useful to continue collecting data to increase statistics.

Stat. Syst.

Summary

- Muon g-2 is a precision battle between
- Muon g-2 experiments are a battle b
- Fermilab Muon g-2 is over:
 - The storage ring method has reached it
 - Not very useful to continue collecting d
- J-PARC Muon g-2 holds great poter
 - New technologies offer very low system
 - It currently suffers from low statistics:

een experiments and theory. Detween stat and syst uncertainties.		
ts <mark>systematic limit</mark> ; lata to increase statistics.	Stat.	Sy
ntial: natic uncertainties; new ideas are needed to address this	chall	en
		5

The CERN muon g-2 experiments (1960-1979)

F. Farley, E. Picasso The Muon (g-2) Experiments at CERN Ann. Rev. Nucl. Part. Sci. 29 (1979) 243-282

The history of the muon (g-2) experiments

B. Lee Roberts*

SciPost Phys. Proc. 1, 032 (2019)

F.J.M. Farley^{a,*}, Y.K. Semertzidis^b

^aYale University, New Haven, CT 06520, USA ^bBrookhaven National Laboratory, Upton, NY 11973, USA

 $a_{\mu} = (g_{\mu} - 2)/2 \sim g_{\mu}/1000$

Fig. 10. The first experimental magnet in which muons were stored at CERN for up to 30 turns. Left to right: Georges Charpak, Francis Farley, Bruno Nicolai, Hans Sens, Antonio Zichichi, Carl York and Richard Garwin.

Schedule and milestones (need revisions) 16

JFY	2023	2024	2025	2026	202
KEK Budget					
Surface muon		Funding Secured!	Beam at	H2 area	
Bldg. and facility	Final design ✓			*	Comp
Muon source			★ I	onization	test
LINAC		✓ 80keV acce	leration@S2 4.3 M	eV@ H2 ★	
Injection and storage		✓ Comple electron ir	etion of njection test		
Storage magnet			★ B	-field probe ready	
Detector			★ Mass product	ion ready	
DAQ and computing		* re	★ small DAQ sy common comput	stem operation ten ing t	st Ready
Analysis				Tracking software	ready Analy

We formed an adhoc team to reconsider the design and planning of the experimental bldg.

Towards the Ultimate Muon Anomaly Test

Slides by T. Mibe, inspired by K. Jungmann's slide

Precision Comparison

	BNL-E821	Fermilab-E989	Our Experiment
Muon momentum	3.09 GeV	V/c	$300 \ { m MeV}/c$
Lorentz γ	29.3		3
Polarization	100%		50%
Storage field	B = 1.45	5 T	B = 3.0 T
Focusing field	Electric quad	drupole	Very weak magnetic
Cyclotron period	149 ns	5	7.4 ns
Spin precession period	$4.37 \ \mu s$		$2.11~\mu s$
Number of detected e^+	5.0×10^{9}	$1.6 imes 10^{11}$	$5.7 imes10^{11}$
Number of detected e^-	$3.6 imes 10^9$		
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb (Phase-1
(syst.)	280 ppb	100 ppb	$<\!70 \text{ ppb}$
EDM precision (stat.)	$0.2 \times 10^{-19} \ e \cdot \mathrm{cm}$		$1.5 \times 10^{-21} \ e \cdot \mathrm{cm}$
(syst.)	$0.9 \times 10^{-19} \ e \cdot \mathrm{cm}$		$0.36 \times 10^{-21} \ e \cdot \mathrm{cm}$

J-PARC E34

EDM Measurement

No E-field simplifies the measurement for J-PARC.

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right] \qquad \vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$
FNAL E989
(at magic γ)
J-PARC E34
(E = 0 at any γ)

• EDM measurement relies on the tilt of muon precession to the mid plane.

EDM Measurement

EDM measurement relies on the tilt of muon precession to the mid plane

- Observed in up-down asymmetry
- $\omega_{\eta}/\omega_{a} ~(\eta \beta/2a_{\mu})$
- Good detector alignment precision is essential
- aim at 10⁻²¹ e cm sensitivity (10⁻⁵ rad)
- 1 µm detector alignment measurement is developed

EDM Measurement

- The muon EDM SM expectation is $\sim 2 \times 10^{-38}$ e cm
- The current experimental limit is 1.8×10^{-19} e cm by the BNL E821.

Surface muon cooling by laser ionization of muonium (Mu) to thermal muon

Surface muon cooling by laser ionization of muonium (Mu) to thermal muon

62

Surface muon cooling by laser ionization of muonium (Mu) to thermal muon

rmal muons	Re-accelerated muons		
20 - 30 meV	212 MeV		
2.3 keV/c	300 MeV/c		
0.4	4×10^{-4} Re-		
μ			

2013	 Muonium emission from silica aerogel [PTEP 103C0
2014	 Laser-ablation on aerogel surface [PTEP 091C01 (2014)]
2020	 Study of muonium emission from laser-ablated silica aerogel [PTEP 123C01 (2020)]

• Two laser options are under development:

122 nm laser

Challenging

High efficiency (73% efficiency at 100 µJ, now only 5 to 10 µJ achieved)

244 nm laser

- Easier for development
- Being used since 2021
- Efficiency under estimation (lower than 122 nm)

Surface muon cooling by laser ionization of muonium (Mu) to thermal muon

3 GeV proton from RCS $2 \times 10^{15} / s @1MW$

Muon target (graphite, ^t20mm)

3 GeV proton from RCS

$2 \times 10^{15} / s @1 MW$

Repetition rate 25 Hz, double bunches Tandem target: 5% for µ, 95% for n

Muon target (graphite, ^t20mm)

3 GeV proton from RCS $2 \times 10^{15} / s @1 MW$

Muon target (graphite, ^t20mm)

S line

- surface μ^+
- S1 for µSR ٠
- S2 for Mu 1S-2S •
- S3/S4 are planned

3 GeV proton from RCS $2 \times 10^{15} / s @1MW$

Muon target (graphite, ^t20mm)

H line

- surface μ^+ (>10⁸ μ^+/s), cloud μ^+/μ^- , e⁻
- for high intensity & long • **beamtime** experiments
- H1 for DeeMe & MuSEUM
- H2 for g-2/EDM & TµM Under construction

S-line

- surface μ^+
- dedicated to μ SR ullet
- S1 area is available •
- S2 is under construction •
- S3/S4 are planned •

3 GeV proton from RCS

 $2 \times 10^{15} / s @1MW$

Muon target (graphite, ^t20mm)

U-line

- ultra slow μ^+
- U1A for nm- μ SR
- U1B for μ microscopy •
- under commissioning •

H-line

- surface μ^{+} (>10⁸ μ^{+}/s), decay μ^+/μ^- , e⁻
- for high intensity & long **beamtime** experiments
- H1 for DeeMe & MuSEUM
- H2 for g-2/EDM & transmission muon microscopy
- under construction

D-line

- decay μ^+/μ^- , surface μ^+
- D1 area for μ SR
- D2 for variety of science •

H-line Construction

- Beam commissioning is ongoing at the H1 area.
- Construction of the H2 area is in progress.
- The extension building design is ready to start construction in 2023.

Extension building for muon LINAC, kicker and storage ring

H-line Construction

- Beam commissioning is ongoing at the H1 area.
- Construction of the H2 area is in progress.
- The extension building design is ready to start construction in 2023.

H-line Surface Muon Optics

Simulated beam profile at H2 area entrance

- The beam-line consist of solenoids ("HS"), bending magnets ("HB"), DC separator ("HSEP"), quadruples ("HQ"), etc.
- Beam-line optics was tuned to deliver 1.6×10^8 surface μ /s at the muonium production target under a 1MW proton beam power.

Muon Acceleration

The first muon-dedicated linac in the world

Frequency (2-stage) 1×10^{6} /s Intensity Rep rate 25 Hz

Muon LINAC parameters

Pulse width	10 ns	
Norm. rms emittance	1.5 π mm m	
Momentum spread	0.1 %	

Muon Acceleration

• First muon acceleration using RF linac! Phys. Rev. Accel. Beams 21, 050101 (2018)

Muons accelerated in Japan

Muons have been accelerated by a radio-frequency accelerator for the first time, in an experiment performed at the Japan Proton Accelerator Research Complex (J-PARC) in Tokai, Japan. The work paves the way for a compact muon linac that would enable precision measurements of the muon anomalous magnetic moment and the electric dipole moment.

Around 15 years ago, the E821 storage-ring experiment at Brookhaven National

VOLUME 58 NUMBER 6 JULY/AUGUST 2018

Nuon Acceleration

- Completed fabrication of the real IH-DTL
- Fabricating the 1st DAW tank & proto-DLS.

Stem with washer

Real IH-DTL

Muon LINAC parameters	
Frequency (2-stage)	324MHz, 129
Intensity	1×10 ⁶ /s
Rep rate	25 Hz
Pulse width	10 ns
Norm. rms emittance	1.5 π mm m
Momentum spread	0.1 %

Stem with disk

Real DAW in production

Nuon Acceleration

- Fabrication of the real IH-DTL completed
- Fabricating the 1st DAW tank & proton-DLS.

Stem with washer

-	
Frequency (2-stage)	324MHz, 129
Intensity	1×10^6 /s
Rep rate	25 Hz
Pulse width	10 ns
Norm. rms emittance	1.5 π mm m
Momentum spread	0.1 %

Muon LINAC parameters

Disk1

Stem with disk

DAW ready for production

DLS prototype (ready for production soon)

Nuon Acceleration The latest exciting result on April 2024

 The first-ever positive thermal muon RF re-acceleration to 90 keV was demonstrated at the J-PARC MLF S2 area on April 2024.

Press release in English: <u>https://j-parc.jp/c/en/press-release/2024/05/23001341.html</u>

A big milestone for the experiment

Muon Acceleration Next milestone: acceleration to 4 MeV

 the next step is to add IH-DTL to do further acceleration to 4 MeV at H2 area (the final experimental site)

3D Spiral Injection Why to inject the beam 3D spirally? The 3D spiral injection scheme has been invented for small muon orbit

[PRD73, 072003, 2006]

Conventional 2D injection @BNL and FNAL

- Inflector + horizontal kicker
- Efficiency ~3-5%

Novel injection @J-PARC

- 3D spiral injection + vertical kicker
- Efficiency > 80%
- to be adopted for the EDM @ PSI too 80

3D Spiral Injection

- Prototypes of the kicker were fabricated, and the 3D injection scheme is validated using a low momentum pulsed electron beam at KEK
- Simulation is still ongoing before finalising the design

Storage Magnet

• 3 Tesla MRI-type superconducting solenoid magnet is under design

M. Abe et. al., NIM A 890, 51 (2018)

- height : ± 5 cm
- Field strength : 3T
- Uniformity: 0.1 ppm (Azimuthal integral)
- Injection region : Smooth field for beam injection
- Weak focus field: -5e-4 T/m of Br at maximum

Average magnetic field uniformity is better than 0.1 ppm

25 ppb/line

	Unit	Value
al field	Т	3.0
rent	А	417.5
gy	MJ	14.6
e	Н	166.9
strand	Т	5.4

Storage Magnet Magnetic Field Calibration

- at **1.2 T**; further tests will be carried out at **3 T**.
- In the cross-calibration of FNAL and J-PARC field probes at ANL, ~7 ppb agreement was obtained with 15 ppb uncertainties.

MRI magnet for MuSEUM experiment

Magnetic field after shimming

Local uniformity of 1 ppm was demonstrated by the MUSEUM experiment magnet

Cross calibration at ANL in January 2019

Positron Tracking Detector

- Consists of 40 radial rectangle modules. A quarter vane consists of

Software Development

- framework was developed (named "g2esoft").
- A reconstruction algorithm in high track density is being implemented. Application of Graph Neural Networks (GNN), etc., is ongoing.

Concept of g2esoft

To manage detector simulation and track reconstruction, a new software

Simulated positron hits and reconstructed tracks with 25 positrons

Thermal Muon Source Muonium (Mu) Laser Ionization Test

muonium from silica aerogel at the J-PARC MLF S2 area

The quick demonstration of thermal muon generation via laser ionization of

Thermal Muon Source Muonium (Mu) Laser Ionization Test

muonium from silica aerogel at the J-PARC MLF S2 area

The quick demonstration of thermal muon generation via laser ionization of

$$\Delta \nu_{1S2S} \simeq \frac{3\alpha^2}{8h} m_e c^2 (1 + \frac{m_e}{m_{\mu}})^{-1}$$

• With the 244 nm laser, It is also a direct measurement of Mu 1S-2S interval \rightarrow determination of muon mass (Similar to Mu-MASS at PSI)

• Final goal:

- Muon mass: 1 ppb
- ► (1S-2S: 10 kHz, 4 ppt)

Thermal Muon Source Muonium (Mu) Laser Ionization Test

muonium from silica aerogel at the J-PARC MLF S2 area

The quick demonstration of thermal muon generation via laser ionization of

