Al4Accelerators team activities

Andrea Santamaria Garcia 14-03-2025

Doctoral student graduation

Reinforcement Learning for Autonomous Accelerators

<u>"Real-time reinforcement</u> <u>learning with online training</u> <u>for large-scale facilities"</u>

First deployment in an accelerator learning purely online and running on hardware

Reinforcement Learning for Autonomous Accelerators

The Reinforcement Learning for Autonomous Accelerators Collaboration Workshops

Speakers: Andrea Santamaria Garcia, Annika Eichler

Christian Contreras Campana, Christian Hespe, Simon Hirländer, Jan Kaiser, Sabrina Pochaba, Borja Rodriguez Mateos, Chenran Xu

Reinforcement Learning

Reinforcement learning is a promising learning paradigm that can open the door to **autonomous control** in accelerators

- It can learn without a model of the dynamics by purely sampling the environment.
- Deep RL can deal with continuous infinite environments thanks to function approximation.
- Fastest convergence speed in optimisation problems.
- Deals with non-stationary environments and delayed consequences.

Real-world deployment challenges: partial observability, sample efficiency, safety, robustness, and generalisation.

Reinforcement Learning for Autonomous Accelerators

RL remains relatively unknown in the accelerators community

→ Considerable upfront engineering investment (algorithm design, tuning, and training, deployment)

The RL4AA mission

- **Connect** RL enthusiasts within the particle accelerator community to foster collaborative projects across institutions and facilitates interaction with other RL experts for the exchange of ideas.
- Educate on both fundamental and advanced RL concepts and demonstrate practical applications in accelerators, offering valuable resources such as programming tutorials, lectures, and educational events.
- **Facilitate discussions** on the challenges of developing and deploying RL algorithms in particle accelerators and other large-scale infrastructures.
- **Streamline and speed up** the research process to uncover foundational, domain-specific solutions.

Reinforcement Learning for Autonomous Accelerators

Github: https://github.com/RL4AA Discord: https://discord.gg/rudtJaeW Website: https://rl4aa.github.io/ Youtube channel: https://www.youtube.com/@RL4AAColl aboration Paper: DOI:10.18429/JACOW-IPAC2024-TUPS62

RL4AA'23 in Karlsruhe

Reinforcement Learning for Autonomous Accelerators

https://indico.scc.kit.edu/event/3280/

- 2 days
- 35 participants
- RL introductory lectures
- <u>Coding tutorial</u>
- Meet and greet talks
- Seminar
- Discussion groups and advanced discussion session
- Accelerator facility tour
- Social events

RL4AA'24 in Salzburg

https://indico.scc.kit.edu/event/3746/

Reinforcement Learning for Autonomous Accelerators

- 3 days
- 56 participants
- RL crash course
- <u>Advanced coding tutorial</u> with lecture
- Two keynote speakers
- Facility talks
- Invited talks
- Student talks
- Poster session
- Closing discussions
- Social events

Keynote speakers 2024

Reinforcement Learning for Autonomous Accelerators

Antonin Raffin Maintainer of Stable Baselines 3 and research engineer German Aerospace Center (DLR)

<u>Designing and Running</u> <u>Real-World RL Experiments</u>

YouTube video

Keynote speakers 2024

Reinforcement Learning for Autonomous Accelerators

FelixLead research scientistBerkenkampBosch Center for Al

Towards real-world RL

YouTube video

Tutorial 2024

Meta Reinforcement Learning for steering tasks

Use case: AWAKE beamline at CERN

Implementation example for the RL4AA'24 workshop

Simon Hirlaender, Jan Kaiser, Chenran Xu, Andrea Santamaria Garcia

The accelerator problem we want to solve

The goal is to **minimize** the distance Δx_i of an **initial beam trajectory** to a **target trajectory** at different points *i* across the accelerator(here marked as "position") in the least amount of steps.

https://github.com/RL4AA/rl4aa24-tutorial

Reinforcement Learning for Autonomous Accelerators

RL4AA'25 in Hamburg

https://indico.scc.kit.edu/event/4216/

- 3 days
- 73 participants
- RL introductory lecture
- Coding challenge with prizes
- Keynote speakers
- Talks
- Poster session
- Accelerator facility tour
- Social events

Looking at the numbers

Reinforcement Learning for Autonomous Accelerators

Keynote speakers 2025

Reinforcement Learning for Autonomous Accelerators

Jan Peters

Professor for Intelligent Autonomous Systems TU Darmstadt

Inductive Biases for Robot Reinforcement Learning

Keynote speakers 2025

Reinforcement Learning for Autonomous Accelerators

Alessandro Swiss Plasma Center Pau EPFL

Plasma integrated control and trajectory optimization via reinforcement learning: applications in magnetic confinement fusion

Reinforcement Learning for Autonomous Accelerators

ARES (Accelerator Research Experiment at SINBAD)

ARES is an S-band radio frequency linac at the DESY Hamburg site equipped with a photoinjector and two independently driven traveling wave accelerating structures. The main research focus is the generation and characterization of sub-femtosecond electron bunches at relativistic particle energy. The generation of short electron bunches is of high interest for radiation generation, i.e. by free electron lasers.

- Final energy: 100-155 MeV
- Bunch charge: 0.01-200 pC
- Bunch length: 30 fs 1 ps
- Pulse repetition rate: 1-50 Hz!

Reinforcement Learning for Autonomous Accelerators

The accelerator problem we want to solve

We would like to focus and center the electron beam on a diagnostic screen using corrector and quadrupole magnets

Reinforcement Learning for Autonomous Accelerators

Reinforcement Learning for Autonomous Accelerators

1	The 8-ties	9 9	0.02739
2	Reinforced Confusion	9 9 9	0.04908
3	Beam Kickers	9 9 9	0.06213
4	All good things come in 3s		0.07769
5	codingS3b	9	0.09926
6	Tetro Dotoxintoxin	() ()	0.10001
7	SLAM	(a)(a)(a)(b)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)<	0.13099
8	amylizzle	۲	0.14991
9	Ryan Roussel		0.18012
1 1	Do Nothing		0.81225

Introductory lecture

Slides available

Facility tours at DESY

Reinforcement Learning for Autonomous Accelerators

Social events

Reinforcement Learning for Autonomous Accelerators

Reinforcement Learning for Autonomous Accelerators

We will be happy to welcome you in Liverpool in for RL4AA'26!

1 C

1111

MaLAPA at CERN

Reinforcement Learning for Autonomous Accelerators

5th ICFA Beam Dynamics Mini-Workshop on Machine Learning for **Particle Accelerators**

MaLAPA at CERN

Highlights from RL4AA'25

https://indico.cern.ch/event/1382428/c ontributions/6272819/

MaLAPA at CERN

Reinforcement Learning for Autonomous Accelerators

Cheetah tutorial

https://indico.cern.ch/event/13 82428/contributions/6272814/

Reinforcement Learning for Autonomous Accelerators

- Was asked to partner RL4AA with MaLAPA
- Currently date conflict with RL4AA and MaLAPA 2026
- We started and are managing the MaLAPA Discord server and website
- Will start gathering resources for the ML in accelerators community

Future

Reinforcement Learning for Autonomous Accelerators

Talks

- Invited talk at <u>IPAC'25</u> (Taiwan, 1-6 June)
- Invited talk at EuCAIF (Sardinia, 16-20 June)
- Invited talk at Particle Accelerators and Beams (Oxford, 9-10 July)

Papers

- PRL on control of microbunching instability with RL
- RL4AA proceedings
- PRAB on online control in accelerators with RL on hardware
- NatPhys ML in accelerators review paper
- RL review paper

Reinforcement Learning for Autonomous Accelerators

Research

- Develop wakefield capabilities in Cheetah (SLAC+CI collab)
- Integrate CLARA in Cheetah and try optimisations

Students

• Two CERN students interested in doctoral thesis CERN+UoL