Quantum-correlated $D^0\overline{D}^0$ systems in LHCb run 3

Ho Sang Lee Supervisors: Paras Naik, David Hutchcroft, Tara Shears

22nd May 2025

1/15

Quantum-correlated $D^0\overline{D}^0$ systems - Motivation

- Produced in decays of quarkonia-like states, e.g $\chi_{c1}(3872) \rightarrow D^0 \overline{D}^0 \pi^0 / \gamma$ produces *C*-even/odd $D^0 \overline{D}^0$ systems respectively
- Initial aim is to separate C-even/odd D⁰D⁰ systems and extract their respective yields without reconstructing neutrals
- Opens up a number of measurements — in-house strong phase input to CKM gamma, *T/CPT* violation measurements in neutral charm, near-threshold spectroscopy...

DoubleCharm selections - Selective persistence

- In 2024, our trigger lines had full-event persistency i.e. when fired, the entire event would be saved to disk
- BW to disk over budget towards end of 2024 Quarkonia WG contributed over 0.284 GB s^{-1} , with a LHCb-wide target of 0.68 GB s^{-1} large reduction was needed!
- Held responsibility for re-optimising a number of trigger lines used by the Quarkonia WG

DoubleCharm selections - Selective persistence

- Only save certain parts of the event that we need, e.g. tracks from same PV as $D^0\overline{D}^0$, some detached tracks, neutrals...
- Validated using a $T_{cc}^+ \rightarrow D^0 D^0 \pi^+$ MC by combining triggered *DD* candidates with additional pions to form T_{cc}^+ candidates
- Large reduction in bandwidth for little cost Event size reduced by \sim 40% while losing around ${\cal O}(1\%)$ signal
- Work is ongoing to validate feature using $D^{*+}(2010) o D^0 \pi^+$ decays in 2025 data

DoubleCharm selections - Charm hadron builders

- Reconstruction of charm hadrons in 2024 data used tight kinematic cuts \implies clean $D^0 \rightarrow K^- \pi^+$ mass spectrum at expense of efficiency for near-threshold signals (i.e. $T_{cc}^+, \chi_{c1}(3872))$
- Looked at loosening kinematic cuts; focus more on decay topology
- Tested using $\chi_{c1}(3872) \rightarrow D^0 \overline{D}^0 \pi^0$ MC sample; ~ 80% increase in near-threshold signal efficiency without increasing trigger bandwidth

First look at 2024 data

- Started work on analysing 2024 $D^0 \to HH$, $\overline{D}^0 \to HH$ data by looking at selections to reduce background
- As a first step, tighten topological cuts on D^0 and daughter hadrons:
 - Require D^0 to be consistent with originating from associated PV
 - Require daughter hadron tracks to be be detached from closest PV
- Aim to reject random HH combinations as well as D^0 originating from B decays
- Effect of selections on signal readily seen in $D^0 \to K^- \pi^+$, $\overline{D}^0 \to K^+ \pi^-$ channels

First look at 2024 data

- Large peak at D⁰ mass in subsample rejected by cuts explained by D⁰ originating from decay of B mesons
- Need for cut is more readily demonstrated by channel with a $D^0 \rightarrow \pi^- \pi^+$ decay, e.g. $D^0 \rightarrow K^- \pi^+$, $\overline{D}^0 \rightarrow \pi^- \pi^+$

First look at 2025 data

- Implemented monitoring for charm hadron mass distributions in the trigger before combination into *DD* candidates
 - Useful for checking performance of charm hadron builders due to higher statistics
 - Enables real-time monitoring of trigger performance
- Data taken over a single run corresponding to 1.34 pb⁻¹ of *pp* collisions during commissioning

Summary of work done so far

- Implemented and tested selection persistency for Quarkonia WG spectroscopy lines Around 100 MB s^{-1} reduction in BW to disk for tiny cost in efficiency
- Reoptimised DoubleCharm trigger lines to improve efficiency for near-threshold exotic hadrons, namely the X3872 and T_{cc}^+
- Started working on selections for quantum-correlated $D^0\overline{D}^0$ analysis using Run 3 LHCb data
- Ongoing efforts to validate changes to trigger using 2025 data
- Any questions?

Backup Slides

LHCb dataflow - A brief overview

LHCb dataflow - A brief overview

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Selective persistence - Signal loss

- MC sample was truth-matched by imposing requirements on the true origin vertex of the D mesons and extra π^+ , PID and parent/daughter IDs and keys
- Single event lost when moving to selective persistence corresponds to an event where the *DD* candidate and additional π^+ have been reconstructed to originate from different PVs (i.e. PV mis-association)
- Seen in distribution of difference in PV z-position between DD candidate and π^+

First look at 2024 data - Background studies

- $\bullet\,$ Studied events rejected by tightening topological cuts by looking at $\chi^2_{\rm PV}$
- $\chi^2_{\rm PV}$ refers to the χ^2 obtained when refitting the decay tree of a *DD* candidate under the constraint that both *D* mesons originate from the same PV
- Serves as a measure of how consistent a *DD* candidate is with the hypothesis that both *D* mesons originate from the same PV
- Wide tail in distribution of $\chi^2_{\rm PV}$ indicates that a large number of rejected events originate from B decays

First look at 2024 data - Background studies

- Applying $\chi^2_{PV} < 16$ cut beforehand shows that the D^0 and daughter selection cuts have a drastically different effect on the mass distribution of rejected events lose around $\mathcal{O}(10\%)$ events in the D^0 mass peak
- Signal loss consistent with a $\mathcal{O}(1\%)$ signal loss seen from a 2024 $D^{*+}(2010) \rightarrow D^0 \pi^+$ sample using the same D^0 selections but without the requirement to form a DD candidate.

イロト イボト イヨト イヨト 二日