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Quantum Computing Error Correction

Need to address depolarization, dephasing, 

gate errors• Avenue to overcoming computational 

limitations in Particle Physics

• Noisy Intermediate-Scale Quantum era: 

limited system sizes, very prone to errors

• On the path towards Fault-Tolerant 

Quantum Computing: lower error rates, 

prevention of cascading errors

What HEP applications can we 
look forward to in the early 
Fault-Tolerant era? 



Neutrino Physics Neutrino Event Generation

• Simulations need to span wide energy ranges 
(perturbative, non-perturbative, regions 
described by different models)

• To increase interaction likelihood, neutrino 
experiments utilize nuclei, introducing the need 
to model nuclear physics effects

• Several complex mechanisms at play, e.g. 
hadronization

• Underlying theoretical models have several 
limitations, requiring MC builders to construct 
empirical models and make important 
approximations

• Sparse data for MC validation and tuning, leading 
to outputs with large flux uncertainties, often in 
conflict with each other

• We’re addressing challenges in Neutrino 

simulations, motivated by :

• reliance on Event Generators for relating 

experimentally observed final states and 

underlying kinematics

• increased simulation precision required 

as upcoming large experiments begin 

operation (Hyper-Kamiokande, DUNE, 

JUNO)



Neutrino-Nucleus Interaction Pionless EFT on the 

Lattice• Nucleon interactions and dynamics can be 

represented approximately using Nuclear EFTs

• Pionless: Strong interactions mediated by pion exchanges 

are not included explicitly. Short range interactions

• One-Pion-Exchange: Long range interactions, truncated as 

rapidly decaying

• Dynamical-Pion: Explicit inclusion of bosonic pion field
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Quantum Simulation

Our goal is to produce a complete approach to 
the implementation of Nuclear EFTs in early 
Fault Tolerant Quantum Computers, with a 
focus on understanding the costs (gate counts 
and qubit counts) required to obtain useful and 
accurate results, as well as scalability

• Fermionic encoding: mapping fermionic 

creation-annihilation operators into qubit 

operators

• State preparation: The choice of initial state 

will affect the performance and runtime of 

many algorithms. We need to implement 

efficient procedures to construct, for 

example, energy ground states

• Time evolution in accordance with our theory

• Obtaining observables

Algorithmic choices in all 
steps of the simulation are key 
to achieving quantum 
advantage



Current work

• Gauging time-evolution costs and 

precision trade-offs

• Considering strategies for obtaining 

observable measurements, weighing 

algorithmic constraints and physical 

interest

• Application of implemented algorithms to 

more sophisticated Nuclear EFTs

• Application of initial state preparation 
techniques suited for the early Fault Tolerant 
era, for pionless EFT

• Initial guess using Hartree-Fock method to get 
good overlap with ground state

• LT algorithm (Lin and Tong, 2022): strategic 
sampling to construct Cumulative 
Distribution Function for Hamiltonian spectra

• Estimating costs for state preparation 
procedure for example nuclei

• Evaluation of theory implementation choices 
(e.g. first-quantized vs second-quantized 
approaches)

Future perspectives
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