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STANDARD MODEL → PREDICTIVE PHYSICS
Standard Model
Bosons & Fermions

EFTs
+ Phenom. Models

Quantum Comp.
+ Simulation?

Structure
& Observables

• Target observables

• Scattering cross sections e.g. single pion production

• Direct QCD? Not (yet) practical
• Lattice QCD real-time dynamics→ sign problems
• Quantum algorithms ≳ 1050 gates for simple quark transport1

• Nuclear Effective Field Theory (EFT)

• Most general Lagrangian consistent with QCD symmetries &
approx. chiral symmetry

• Include all terms up to a given order in energy expansion:
Pionless, one-pion exchange, dynamical pions

1 arXiv:2107.12769



QUANTUM SIMULATION OF EFT DYNAMICS

• Key subroutine is real-time evolution of HEFT → e−iHEFTt

BOSONS QUBITS FERMIONS
HARD EASY(ish)

• (bosonic) pion fields drive the resource cost for a ‘minimal’
10 × 10 × 10 lattice1

Model Circuit Depth Qubits
Pionless 5.8 × 108 6,000
Dynamical Pions 1.6 × 1044 138,000

• Can native bosonic hardware reduce this overhead?

1 arXiv:2312.05344



HYBRID QUBIT–OSCILLATOR ARCHITECTURES

• Circuit QED1,2,3 (this work): cavity modes;
qubits = transmons

• Trapped ions: phonon modes; qubits = ion-
spin levels

• Neutral atoms: motional modes; qubits =
atomic internal states

• Universal control via natively available opera-
tions

• Assume arbitrary Fock-level access & full
qubit–oscillator connectivity

1 Nat. Phys. 16, 247–256 (2020).
2 arXiv:2005.12667
3 arXiv:2407.10381



MINIMAL EXAMPLE: BOSONIC DISPLACEMENT OPERATOR

• Displacement operator:

D̂(α) = eαb̂†−α∗b̂, α ∈ C

displaces bosonic mode in phase space

• Native in cQED: Realized directly by a resonant microwave drive

• Representing bosonic modes with qubits: q = ⌈log2(nmax + 1)⌉
qubits, cutoff nmax

Method Gates Qubits
Pauli decomposition q 2 q−1 q
Square-root method 11

2 q2 + 23q − 28 3q + 2

⇒ Native displacement is orders-of-magnitude cheaper



TOWARD A DYNAMICAL PION EFT
HDπ = Hfree±

free nucleon

+HC + HCI2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
NN contact

+ Hπ¯
free pion

+ HπN±
pion–nucleon

• Consider minimal, non-trivial 1D interaction term:

H(1D)
int = gA

2fπ
∑

x
[n̂00(x) − n̂01(x) − n̂10(x) + n̂11(x)]∂1π(x) .

⇓Mapping to spin–boson DOF

• Terms∝ Z (b† + b)

• Native time evolution:

e−i Z ϕ (b†+b) = e−iπ2 Z n e iϕ (b†+b) e iπ2 Z n
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

CD(ϕ) = CΠ D(iϕ) CΠ†



OUTLOOK

• Short-term goal: Quantify savings

• Real-time evolution of hybrid vs. qubit-only encoding

• Next step: Observables costs

• Identify target observables (e.g. linear-response via two-point
functions)

• Estimate & compare overhead for extracting

• Bosonic-mode protection

• QEC schemes available
• Fault-tolerance remains challenging

• Regime of advantage?

• NISQ vs. Early fault-tolerance vs. Full fault-tolerance
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SUPERCONDUCTING QUBITS & MICROWAVE CAVITIES

Comprehensive reviews:

• Blais et al., Nat. Phys. 16,
247–256 (2020)

• Blais et al., Rev. Mod. Phys. 93,
025005 (2021)

• Crane et al., arXiv:2409.03747

• Liu et al., arXiv:2407.10381



REAL TIME EVOLUTION ON A QUANTUM COMPUTER

• Trotter–Suzuki Approximation We split the full Hamiltonian into
simple pieces and apply each term in short time slices:

e−iHt ≈ (
Γ

∏
j=1

e−iH j δt)
t/δt

(Error falls as you shrink the time step or increase repetition)

• Jordan–Wigner transform:

c†j → (∏
m< j

Zm)
X j − iY j

2
,

maps fermionic modes→ qubit Pauli strings, preserving {ci, c†j} = δi j


