ATLAS BSM Physics Searches

John Anders

23rd May 2025 HEP Annual Meeting Lumi Measurement

SCT +

Analysis

Software

SM Precision

+ rare processes

W mass, W/Z p_T, low/highmass DY, ttZ, single top, rare tau decays b/c –jet tagging

Tau reco.

and ID

Higgs physics

> SM Higgs, Di-Higgs, BSM Higgs

New physics searches

SUSY, Dark Matter, Dark Sector, LLPs, LQs, ALPs, ...

UNIVERSITY OF LIVERPOOL

BSM Physics - Overview

- Tremendous effort in ATLAS to search for new physics, motivated by questions that remain unanswered by the Standard Model/Higgs
 - Higgs Hierarchy problem, Dark Matter, Lepton-flavour violation, matter anti-matter asymmetry, force unification....
- The group are at the forefront of exploiting new reconstruction methods, AI techniques for signal isolation and reinterpretation of existing results (O - Liverpool involvement)
- Our main focuses are split between a few highly-motivated scenarios

Selected ATLAS results

95% CL observed limits

JHEP 06 (2022) 005

Tracker, 139 fb

JHEP 10 (2018) 031 Monojet, 139 fb⁻

arXiv:2403 1533

______ Cτ [m] 40 GeV 45-60 GeV Any

HEP 11 (2021) 229

Tracker (b-tag), 36 fb

ATL-PHYS-PUB-2021-020

ATLAS-CONF-2020-052 Tracker, 37.5-140 fb

Muon System (2 Vtx Only), 139 fb⁻¹

Muon System (1 Vtx + 2 Vtx), 36 fb⁻¹

hys. Rev. D 106 (2022) 03200

Phys. Rev. D 99 (2019) 052005 Calorimeter, 139 fb

Tracker+Muon System, 36 fb

H→ inv, 7-8-13 TeV combination

5-8 GeV 15-20 GeV 25-35 GeV

Phys. Rev. D 101 (2020) 052013

July 2024

, *χ*₁⁰) [GeV]

 $\Delta m(\tilde{\chi}_1^{\pm})$

20

10

5

2

0.5

0.2

100

 $m(\tilde{\chi}_1^{\pm})$ [GeV]

- Supersymmetry (Monica, John)
- Leptoquarks (Andy, Mehul, Jordy, John)

ATLAS Preliminary (March 2024) $\sqrt{s}=13 \text{ TeV}$, 36-140 fb⁻¹ Hidden Sector, m_L = 125 GeV

10² 10³

10

1

Dark Sector (Nikos, Monica, Rebecca, Shirsendu, John)

Stable

Searches:

I I P masses

BSM Higgs (Nikos, Andy, Stephen)

B(H→ss)

10-

10-2

10-

10⁻⁵

10-4

10⁻³ 10⁻² 10⁻¹

Prompt

0.0 600 800 1000 1200 1400 1600 1800 2000 2200 2400 $m_{
m LO4}$ [GeV]

BSM Physics – BSM Higgs Nikos, Andy, Monica, Stephen

- Many BSM theories include an extended Higgs sector
 - Introducing a family of higgs particles, such as a heavy CPneutral Higgs (A), charged Higgs (H[±]) and a heavy Higgs (H)
 - Can provide insight into DM, force unification and CP violation
- Ongoing/recent searches for new heavy Higgs particles
 - A→ Zh: Significant effort in Run 2. Team now developing the analysis in Run 3 (Nikos)
 Expected Publication: Next Year
 - BSM Higgs Summary and HH resonant combination: Limits on resonant Higgs production up to 5 TeV (Nikos)
- ATL-PHYS-PUB-2024-008, PRL 132 (2024) 231801
 - Run 3 Search for heavy Higgs production decaying to ZZ, and Zh → invisible (Andy, Monica, Stephen)-
 - <u>See Stephen's slides</u>

Expected Publications: $H \rightarrow ZZ$ Autumn, $Zh \rightarrow inv$, next year

BSM Physics – Supersymmetry Monica, John

- Supersymmetry theories introduce a new gauge symmetry, resulting in a partner "sparticle" for each SM particle
 - Phenomenologically very rich
 - Huge phase space to cover
 - Can solve a plethora of unanswered questions with the SM
 - Higgs hierarchy, Flavour violation, Dark matter...
- In the past, ATLAS has searched for simplified models
 - Easy to optimise for but would not really be how SUSY would realise itself in nature

 χ_1^{\intercal}

- Now considerable work investigating complex models
 - Guided by scans to identify "gaps" in coverage and theoretical motivations
 - More difficult to target!

BSM Physics – Supersymmetry – Non-Minimal Models

Focusing on complex models in the tcMET analysis (John)

- Beyond the "simplified" case, as multiple BRs are available for the SUSY particles
- Focuses on the difficult to target "asymmetric decay" mode
- ML techniques (Neural networks) used to isolate signal and background

- Ongoing work performing a related analysis in the tbMET *p* channel (John)
 - Presence of compressed electroweakinos suggested by loop corrections

Expected Publication: Summer

BSM Physics – Supersymmetry – Compressed States

ISR

Jet

- Quasi-degenerate SUSY mass states (Δ m~100MeV) are highly sought after and both prompt and longlived signatures remain a key target for ATLAS searches $\tilde{\chi}^{\pm} \tilde{\chi}^{0}$, $\tilde{\chi}^{0}$, \tilde
- "Disappearing Track" analysis (Monica, John)
 - A direct search for "compressed" Higgsinos
 - Very low energy decay products
 - Attempt to directly identify the chargino, using interactions within the innermost detector layers

- Ongoing Run 2 analysis using ML methods to reconstruct the "soft" pion
 - Attempting to increase sensitivity in the short lifetime region

Expected Publication: Autumn

BSM Physics – Supersymmetry – R-Parity Violation

GeV

đ

Fraction

- We generally assume R-parity conservation (prevents proton decay & provides a dark matter candidate)
- But we may allow "certain" R-parity decays and remain consistent with existing measurements
 - Standard R-parity conserving analyses are no longer sensitive if this is the case
- RPV Multijet analysis (John)
 - Dedicated search for RPV gluino decays

Novel usage of neural networks to correctly identify which combination of jets belong to each gluino and to calculate the average gluino mass \rightarrow Bump Hunt!

BSM Physics – Leptoquarks (LQs)

Andy, Carl, Monica, Mehul, Johr

- Leptoquarks can be introduced to provide a coupling between quarks and leptons
 - Provides explanations for flavour anomalies and g-2
- The phenomenology can be similar to existing searches, enabling existing results to be reinterpreted
 - Reinterpretation of SUSY results (Monica, John)
- Dedicated searches are also required to fully explore the phase space (Andy, Jordy, Mehul)
 - Run 3 Search for LQ pair production events with the bb**ττ** final state – ongoing (see <u>Mehul's slides</u>)

Expected Publication: Winter

- Searches are designed such that they can be statistically combined (Andy, Monica, John)
 - Combination of existing results provides enhanced sensitivity to LQ production
 - Considering "mixed" scenarios with multiple open decay modes

Phys. Lett. B 854 (2024) 138736

BSM Physics – Dark Sector– Unconventional Signatures Monica, Nikos, Rebecca, Shirsendu

- Dark Sector theories predict a set of "dark" particles which interact very rarely with SM particles (including a DM candidate) ۲
 - We can use Higgs production as a portal to the dark sector
 - The BR(Higgs \rightarrow invisible) leaves room for dark sector particles to be produced in Higgs decays
- Typical benchmark models: Dark photons, Axion like particles
 - Might arise in Higgs decays either directly or in cascade
 - The dark sector particles can decay into SM • particles
- Depending on the dark sector SM coupling, unconventional signatures are expected with long lived particles
 - This shouldn't be too unexpected as the SM contains many long-lived particles (LLPs)
 - As we usually consider "prompt" particles, final states with LLPs require dedicated reconstruction techniques!

BSM Physics – Dark Sector– Unconventional Signatures

Monica, Nikos, Rebecca, Shirsendu

Recent results using GNNs to identify Dark photon production with the Higgs as a portal (Monica, Cristiano)
 <u>Eur. Phys. J. C 84 (2024) 719</u>

- Adapting the GNN techniques from the previous (displaced Dark photon) analysis to search for displaced ALPs (Monica, Nikos, Rebecca)
 - Using Run 3 data to target the (uncovered) region that would provide contributions to g-2

- Developing a novel Run 3 ALPs analysis using Pb-Pb collisions (Monica, Nikos, Shirsendu)
 - Ultra peripheral collisions (UPC) used to investigate ALPs production
 - Production cross-section is dependent on Z⁴
 - Significant increase in PbPb collisions when compared to pp collisions (despite the lower overall luminosity!)
 - See <u>Shirsendu's slides</u>

Conclusion

• ATLAS has a plethora of BSM searches

- Wide ranging BSM program investigating phenomenologically complete models (Extended Higgs, SUSY) and simpler extensions to the SM (LQs, Dark Photons, ALPs)
- Another very important aspect is that these searches also have a "model" independent interpretation, providing even more impact and interpretability
- Run 2 analyses are being wrapped up, and Run 3 analyses are ongoing
 - The increased luminosity and CMS energy in Run 3 provide significant benefits here
 - Analyses are designed such that combinations with existing Run 2 analyses should be easy to perform
- Ongoing developments focusing on complex scenarios, and exploiting all available data
 - Searching for new models in complex final states
 - Developing complex search techniques (using AI etc)
 - Improving ATLAS particle reconstruction

• It's an interesting time to search for BSM Physics!

- I haven't discussed the Lorentz invariance violation analysis (Uta) and SMEFT fits using high-mass DY data (Uta)
- Also not included: EFT interpretations of SM measurements to further increase the impact of our work! 11