### FCC IN A NUTSHELL

#### Timeline

- 2025: <u>Release</u> of the FCC Feasibility Study report
- 2028: Decision by CERN Member States and international partners

#### Tunnel

- 90.7 km circumference
- 180 400 m depths for access shafts
- 8 surface sites (7 in France, 1 in Switzerland)

#### Two stages

- FCC-ee (precision measurements) about 15 years from the late 2040s
- FCC-hh (high energy) about 25 years from the 2070s

#### **Costs/benefits**

- 15 billion CHF, spread over about 12 years for FCC-ee with four experiments
- Positive socio-economic benefit-cost ratio
- About 800 000 person-years of employment created



We have made several contributions to the European Strategy and the newly publish feasibility report https://cds.cern.ch/record/2928193

## **Electroweak precision at FCC ee**

| Observable                                               | value      | resen<br>± | t<br>uncertainty | FCC-ee<br>Stat. | FCC-ee<br>Syst. | Comment and<br>leading uncertainty                                                                   |
|----------------------------------------------------------|------------|------------|------------------|-----------------|-----------------|------------------------------------------------------------------------------------------------------|
| $m_{\rm Z}$ (keV)                                        | 91 187 600 | ±          | 2000             | 4               | 100             | From Z line shape scan<br>Beam energy calibration                                                    |
| $\Gamma_{\rm Z}$ (keV)                                   | 2 495 500  | ±          | 2300             | 4               | 12              | From Z line shape scan<br>Beam energy calibration                                                    |
| $\sin^2\theta_{\rm W}^{\rm eff}~(\times 10^6)$           | 231,480    | ±          | 160              | 1.2             | (1.2)           | From $A_{FB}^{\mu\mu}$ at Z peak<br>Beam energy calibration                                          |
| $1/\alpha_{\rm QED}(m_{\rm Z}^2)~(\times 10^3)$          | 128 952    | ±          | 14               | 3.9<br>0.8      | small<br>tbc    | From $A_{\rm FB}^{\mu\mu}$ off peak<br>From $A_{\rm FB}^{\mu\mu}$ on peak<br>QED&EW uncert. dominate |
| $R_{\ell}^{\rm Z}$ (×10 <sup>3</sup> )                   | 20767      | ±          | 25               | 0.05            | 0.05            | Ratio of hadrons to leptons<br>Acceptance for leptons                                                |
| $\alpha_{\rm S}(m_{\rm Z}^2)~(\times 10^4)$              | 1 196      | ±          | 30               | 0.1             | 1               | Combined $R^{\rm Z}_{\ell},\Gamma^{\rm Z}_{\rm tot},\sigma^{0}_{\rm had}$ fit                        |
| $\sigma_{\rm had}^0 \left(\times 10^3\right) ({\rm nb})$ | 41 480.2   | ±          | 32.5             | 0.03            | 0.8             | Peak hadronic cross section<br>Luminosity measurement                                                |
| $N_{\rm v}(	imes 10^3)$                                  | 2 996.3    | ±          | 7.4              | 0.09            | 0.12            | Z peak cross sections<br>Luminosity measurement                                                      |
| $R_{\rm b}~(\times 10^6)$                                | 216 290    | ±          | 660              | 0.25            | 0.3             | Ratio of $b\overline{b}$ to hadrons                                                                  |
| $\overline{A_{\rm FB}^{\rm b,0}}~(\times 10^4)$          | 992        | ±          | 16               | 0.04            | 0.04            | b-quark asymmetry at Z pole<br>From jet charge                                                       |

• Huge improvement in EW precision

• Mainly from running at Z pole

• Very hard for EW scale New Physics to evade this tests!

### Higgs at FCC ee and hh

| Coupling               | HL-LHC                  | FCC-ee               | FCC-ee + FCC-hh     |
|------------------------|-------------------------|----------------------|---------------------|
| $\kappa_{\rm Z}$ (%)   | 1.3*                    | 0.10                 | 0.10                |
| $\kappa_{\rm W}$ (%)   | 1.5*                    | 0.29                 | 0.25                |
| $\kappa_{\rm b}$ (%)   | 2.5*                    | 0.38/0.49            | 0.33 / 0.45         |
| $\kappa_{\rm g}$ (%)   | 2*                      | 0.49/0.54            | 0.41 / 0.44         |
| $\kappa_{\tau}$ (%)    | 1.6*                    | 0.46                 | 0.40                |
| $\kappa_{\rm c}$ (%)   | _                       | 0.70/0.87            | 0.68 / 0.85         |
| κ <sub>γ</sub> (%)     | 1.6*                    | 1.1                  | 0.30                |
| $\kappa_{Z\gamma}$ (%) | 10*                     | 4.3                  | 0.67                |
| $\kappa_{\rm t}$ (%)   | 3.2*                    | 3.1                  | 0.75                |
| $\kappa_{\mu}$ (%)     | 4.4*                    | (3.3)                | 0.42                |
| $ \kappa_{\rm s} $ (%) |                         | $+29 \\ -67$         | +29<br>-67          |
| $\Gamma_{\rm H}$ (%)   | _                       | 0.78                 | 0.69                |
| Binv (<, 95% CL)       | $1.9\times10^{-2}~{}^*$ | $5 \times 10^{-4}$   | $2.3 	imes 10^{-4}$ |
| Bunt (<, 95% CL)       | $4\times 10^{-2} \ *$   | $6.8 \times 10^{-3}$ | $6.7	imes10^{-3}$   |

- Up to a ×10 improvement in many couplings
- Son
- At Liverpool we look at:
  - muon and invisible at FCC ee
  - diHiggs at FCC hh

### **Di-Higgs at FCC hh**

Lennox Wood (Mphys), Sam Valentine (Mphys), Monica D'Onofrio, Carl Gwilliam, Jordy Degens, Cristiano Sebastiani, Nikos Rompotis





**Fig. 5**: Density distribution of the GNN output scores for the lep-had (left) and had-had (right) channel.

- Look in bbττ channel
- Improve analysis by using Graph Neural Network
- Precision of 3%

# Higgs to invisible at FCC ee

Stephen Randles, Andy Mehta, Nikos Rompotis



- Can fully reconstruct Higgs mass
- Analyses hadronic and leptonic channels
- At two beam energies
- Can measure the SM BF to 3 sigma
- Most stringent limits on New physics in the Higgs sector IMHO



22/5/25

### FCC eh

#### Monica D'Onofrio, Uta Klein, Max Klein



- Work on LHeC as a bridge project for FCC eh
- Contribution to the European Strategy
- Also work done on the feasibility of having a Forward physics facility at FCC