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Atom Interterometry

« Analogous to light interferometer,
where phase measured is the de R
Broglie phase from the atoms

 Using laser pulses to separate and
then recombine atoms along two
paths induces a phase shift

 This phase shift transfers to the
atom state populations which are
readily observable via
fluorescence

Vertical Displacement

* The phase shift is extremely
sensitive to external fields and
forces that differ between paths
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Atom Interterometry
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e Sensitivity scales with
spacetime area 2

 Longer flight times, larger
spatial separation

Position

* Larger baselines, launching,
multiple laser interactions -

(LMT)
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Applications

Fine-Structure Constant

Ultralight Dark Matter Searches
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MAGIS at Fermilab

* 100-meter strontium
gradiometer located at

MINQOS shaft in Fermilab

* Multiple atom sources to
create gradiometric
configuration

* Due to
begin commissioning in
2027

24LS ‘pupio uag fo Asayinod abpu

Neutrino Beam Line for MINERVA and MINOS Experiments
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MAGIS Prototype

* 10m prototype tower located
at Stanford

e Utilises same lasers and atoms

so acts as testing ground for
MAGIS-100

 Recently lifted vertically, close
to completion

* Phase-shear detection platform
built at Liverpool and
commissioned last summer

% LIVERPOOL
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AION

e Multi-institute collaboration to
act as sister consortium to

MAGIS

* 10-metre tower located at the
Beecroft building in Oxford

* Future stages to include 100-
m and 1-km baselines

 Currently in CDR phase

« Awaiting new round of QTFP
funding
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Phase-shear Detection Platform Overview

e Detection module used for
Phase Shear and Coriolis
compensation

e Retro-reflection mirror
precision controlled by three
Piezoelectric Transducers

* Angular feedback via strain
gauges and optical lever

e Designed to have 50 nrad
angular resolution
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Phase-shear Detection Platform Overview

e Detection module used for
Phase Shear and Coriolis - d P Dust shutter

Linear

compensation actuator |

_Tip-tilt
““"" mirror

e Retro-reflection mirror ko
controlled by three Towpedbc.
Piezoelectric Transducers

* Angular feedback via strain ,
gauges and optical lever Kinematic Prezo. s

constraint actuator i
mirror

e Designed to have 50 nrad
angular resolution
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Phase-shear Detection Platform Installation

 University of Liverpool
involved in design,
manufacturing,
prototyping, assembly and
commissioning

* MAGIS
prototype commissioned

at Stanford

* In process of constructing
chamber design with
optical lever feedback
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Phase-shear Detection Platform Installation

 University of Liverpool
involved in design,
manufacturing,
prototyping, assembly and
commissioning

* MAGIS
prototype commissioned

at Stanford

* In process of constructing
chamber design with
optical lever feedback
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Phase-shear Detection Plattorm Pointing Analysis
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 Given required 50 nrad pointing accuracy, important to
understand the how well this is achieved

* Analysing data taken by Henry while in Stanford allowed the
pointing stability and accuracy under mirror orientation to be

measured
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Phase-shear Detection Plattorm Pointing Analysis

s
* Calculated phase difference 10 -
from platform consistently Lo (A
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Liverpool ®>Rb Interferometer

a) Side view Cylindrica ., v* b)Top Viewﬂ’@
etection _ TR il Cylindrical @ :6(}mm
e Acts as a testbed to G Telesope =1 75mm
SUppOI’t WOTI( On MAG'S Repun}f}d : _ﬂ f= 4mf 200m I
an d Al O N M2 PBS 2 Cylmdrlcal

Mirror
f=38.Imm

e Potential fundamental
physics tests

» State detection system
improved

* Atom cloud was dropped
approximately 20 cm
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Liverpool ®>Rb Interferometer
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* Acts as a testbed to
support work on MAGIS

and AION

e Potential fundamental
physics tests
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* Atom cloud was dropped
approximately 20 cm
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Inertially-sensitive Interference Fringes

e Triplet of laser pulses applied,
each separated by time T

 Laser frequencies set to match
magnetic sub-level; other
levels blown away by on-
resonant light

 Tis then varied from 0-400 ps
and the excited state
population measured
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Inertially-sensitive Interference Fringes

* AD = kg T?

 Currently dropped for 800 ps

~ 3 microns

* Due to Doppler effect,

 Once thisis achieved, orders

5/23/2025

longer drop times require

laser beams to be 'chirped'

of magnitude larger flights
will be possible
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Summary and Outlook

* MAGIS Prototype phase-shear

detection platform machined and
prototyped at Liverpool,
successfully commissioned at

Stanford

In process of upgrading platform
to improve angular resolution via
optical monitoring for feedback

for future iterations of
MAGIS/AION

Liverpool interferometer
upgraded and first inertially-
sensitive fringes measured

Commissioning towards a ~1m
interferometer at Liverpool in
near future

72 MAGIS-100

AION
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