
Annual HEP Meeting 2025

Validation and Calibration of Machine Learning Models: 

From Particle Identification to Eye-Disease Prognosis

Robert McNulty
r.j.mcnulty@liverpool.ac.uk

Supervisors:

Dr. Nikolaos Rompotis, Prof. Monica D’Onofrio, 

Prof. Yalin Zheng, Dr. Philip Burgess



Robert McNulty 123/05/2025

Introduction

• 3rd Year PhD Student under LIV.INNO CDT – joint funded with local industry partner (ARO) 

• PhD aimed at R&D projects connected to both ATLAS and ARO

Work presenting today:

• ATLAS: validation of Graph Neural Network (GNN) model for tau-lepton identification (co-developed with 

Dr. J. Carmignani)

• CRiA (through ARO): validation of a time-distributed Convolutional Neural Network (CNN) model for eye-

disease prognosis, initially developed by Dr. J. Bridge (PhD in Health and Life Sciences)



Part I – Particle Identification
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Brief Overview of τ-Leptons at ATLAS

Hadronic Calorimeter
Obtains 𝜋± information

Electromagnetic Calorimeter
Obtains 𝜋0 information 

(via 𝜋0 → 𝛾𝛾 and 𝛾 → 𝑒−𝑒+)

Tracking Detector
Collects charged particle track 
information, e.g., direction and 
position of 𝜋±’s from 𝜏-decay

• Leptonic decays, 𝜏lep:

• Produces  𝑒±, 𝜇± and corresponding 𝜈’s, 
with BR of 35% [1]

• Hadronic decays, 𝝉𝐡𝐚𝐝 (signal):

• 1 or 3 𝜋±  (1- & 3-prong decays) and 
maybe a few 𝜋0, with BR of 65% [1]

• Narrow, collimated jets with low track 
multiplicity

• Main background is quark-gluon initiated jets 
from QCD processes

• Shower shape “drowns out” the narrower 
𝜏had jets

[1] R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022) and 2023 update

https://pdg.lbl.gov/2023/html/authors_2023.html
https://academic.oup.com/ptep/article/2022/8/083C01/6651666
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Problem and Approach - 𝝉𝐡𝐚𝐝 Identification

23/05/2025

𝝉𝐡𝐚𝐝 Identification (ID)
(and Decay Mode Classification)

Problem

• 𝜏had signatures are “drowned-out” by QCD jets

• Currently done via a Recurrent Neural Network (RNN) at ATLAS [ATL-PHYS-PUB-2022-044]

• RNN inputs can be used as an image input to a GNN to perform 𝜏had ID

Approach

• To further study 𝜏had ID with a GNN based approach (TauJetGraphs): 

• Requirement: to return the probability of a 𝜏had candidate originating from a 𝜏 lepton 

as opposed to a QCD jet

https://cds.cern.ch/record/2827111?ln=en
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Tau ID – From RNN to GNN

• Nodes = physics object, Layers = node label

• Nodes within a predefined distance ∆R ≤ 0.4  are 

connected by an edge, where 

∆𝑅 = ∆𝜂2 + Δ𝜙2

Example Distribution: 
1-prong, ∆𝑹

Current: RNN [ATL-PHYS-PUB-2022-044]

• RNN inputs: track, cluster, and high-level (global) jet 

variables

• Can vary in length, but must be ordered in some 

way (e.g., by transverse momentum, 𝑝T)

• GNN inputs: Same as ID-RNN with additional 𝜋0 variables

• Can be unordered sets with varying lengths

Proposed: TauJetGraphs, GNN

*

* Scores given for decay modes are summed for ID, 
e.g., P(1p0n) + P(1p1n) + P(1pXn) = P(1 − prong)

N.B.: 1- and 3-prong trained separately 

Now being further developed and validated by Mehul (see his slides)

https://cds.cern.ch/record/2827111?ln=en
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Tau ID Results – RNN vs GNN

1-prong GNN Output Scores

At 60% Efficiency

• 1-prong rejection improves in GNN 

by order of 10

• 3-prong rejection has some but no 

significant improvement

TauID GNN vs RNN ROC Curve

Efficiency =
True Positives

True Positives + False Negatives

Background Rejection =
False Positives + True Negatives

False Positives

Good signal-background separation

3-prong GNN shows similar 

performance to 1-prong GNN

1-prong 𝝉𝐡𝐚𝐝

1-prong

Efficiency 60% 75% 85% 95%

Rejection 140 62 32 12

3-prong

Efficiency 45% 60% 75% 95%

Rejection 280 130 64 15



Part II – Eye-Disease Prognosis



Robert McNulty 823/05/2025

Brief Overview of Age-related Macular 
Degeneration

• Macular [Macular Society] = Small area at the centre of the retina responsible for central vision, most of our colour 

vision, and finer details

• Damage is permanent

• Age-related Macular Degeneration (AMD) [NHS] = Common eye disease that blurs central vision – doesn’t cause 

complete blindness

• Occurs when aging causes damage to the macula

• Leading cause of vision loss in older adults (typically 50+ years)

https://www.macularsociety.org/macular-disease/macula/
https://www.nhs.uk/conditions/age-related-macular-degeneration-amd/
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Age-Related Eye Disease Study Dataset

• Dataset: Age-Related Eye Disease Study (AREDS)

• Publicly available from: [NCBI]

• Each eye has up to 4 retinal images, each from a clinical visit and contains 

a time stamp and a marker for progression observed (signal/background) 

• Longitudinal data – signal and background labels change over time

• E.g., in (b) progression observed at 5 years – before this, would be 

considered as background (“0”)

Figure available from [J. Bridge, 2022, PhD Thesis]

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1
https://livrepository.liverpool.ac.uk/3167133/
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Problem and Approach – AMD Survival Model
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Advanced AMD Progression

Problem

• AMD progresses at different times for different people/eyes

• Current approach uses a time-distributed CNN (Survival Model) [J. Bridge, 2022, PhD Thesis] 

• Uses real images as inputs

• Images are of the same eye (for each “event”) over time

• Classification problem, but now depends on time as an input/parameter

Approach
• To modify, extend, and finalise a Time-Distributed CNN (Survival Model)

• Requirement: to return a probability of a patient progressing by a given time, 𝑡

https://livrepository.liverpool.ac.uk/3167133/
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Survival Models – Background Information

• Survival Models: Estimate probability of eye progressing to advanced AMD up to a specified time

• E.g., a survival probability of 0.4 is a 40% chance of not progressing by time, t

• Conversely, this is a 60% chance of progression for time, t (failure probability)

• Assumption: Given enough time, t, all will fail (progress)

Name Equation

Baseline Hazard Function ℎ0 𝑡

Hazard Function ℎ 𝑡 = ℎ0𝑒𝑥𝛽

Survival Function 𝑆 𝑡 = − exp − න
0

𝑡

ℎ 𝑢 𝑑𝑡

Survival Probability 𝑆 𝑡 = 𝑃(𝑇 ≥ 𝑡)

Failure Probability 𝐹 𝑡 = 𝑃 𝑇 < 𝑡 = 1 − 𝑆(𝑡)ℎ0 𝑡 = 𝜆 

𝑆 𝑡 = 𝑒−𝜆𝑡 
ℎ0 𝑡 = 𝜆𝛾𝑡𝛾−1 

𝑆 𝑡 = 𝑒−𝜆𝑡𝛾
 

ℎ0 𝑡 = 𝜆𝑒−𝛾𝑡 

𝑆 𝑡 = 𝑒
−

𝜆

𝛾
𝑒𝛾𝑡−1

 

Example Baseline Hazard Functions: Exponential, Weibull, & Gompertz

• Weibull and Gompertz dist.’s match Exponential dist. 
when 𝛾 = 1 and 𝛾 = 0, respectively
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Survival Models – Model Overview

• Three main stages:

1. Feature Extraction (via a CNN) – results in a feature vector 

for each image, 𝐹𝑁

2. Mixed-Effects (ME) Layer – accounts for missing images and 

times, 𝑥𝑖

a) Clinical data can then be appended to the single vector

3. Time-distributed CNN (Survival Model) – estimate the 

Survival Function, 𝑆(𝑡)

• Three models trained, each with different baseline hazards: 

Exponential, Weibull, and Gompertz (see previous slide)

Figure: Overview of the model architecture. Image credit: Dr. J. Bridge. 
Figure available from [J. Bridge, 2022, PhD Thesis]

Stage 1

Stage 2

Stage 3

𝑥 𝑥

https://livrepository.liverpool.ac.uk/3167133/
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Survival Models – Kaplan-Meier Curves

paper

• Kaplan-Meier (KM) curves [paper] compare the 

distribution of survival probabilities across 

different populations (or data splits), and is 

given by:

𝑆 𝑡𝑗 = 𝑆 𝑡𝑗−1 1 −
𝑑𝑗

𝑛𝑗
 

• 𝑆 𝑡𝑗  and 𝑆 𝑡𝑗−1  = Survival Probabilities 

at time 𝑡𝑗, and 𝑡𝑗 − 1, respectively

• 𝑛𝑗 = number of patients alive just before 

𝑡𝑗, and 𝑑𝑗 = number of events at 𝑡𝑗

• When 𝑡 = 0, 𝑆(0) = 1

• Model learns the shape parameter, β

• Used to fit S(t)

• Predictions then compared with truth-level data from KM curves

• Predictions can be made based on patient images instead of generalised to 

population – important as people progress at different rates!

Example: Baseline – Exp.

https://pmc.ncbi.nlm.nih.gov/articles/PMC3059453/
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Survival Models – ROC Curves
With 95% Confidence Intervals
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𝑡 = 1 Year

𝑡 = 3 Years

• Efficiency (TPR)  =
True Positives

True Positives+False Negatives
(× 100%)

• Rejection
1

FPR
=

False Positives+True Negatives

False Positives

Rejection

(at Efficiency)

0.4 0.6 0.8

Exponential 16 8 4.9

Weibull 16 9 5.8

Gompertz 14 9 5.2

Rejection

(at Efficiency)

0.4 0.6 0.8

Exponential 21 10 5.5

Weibull 21 10 6.5

Gompertz 19 11 5.9

• As time progresses, True Positives (TP’s) increase

• Agrees with model assumption

• Weibull maintains higher rejection at each efficiency (except 

for 𝑡 = 3 Years at 0.6 efficiency)

• However, rejection is close between models at these points

• Other metrics required for model choice decision
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Survival Models - Calibration and Decision Curves 
Examples

• Shows how well predicted probabilities match 

actual outcomes

• ideally, predictions should align with the 

observed frequencies along the diagonal

• Net Benefit balances TPs against FPs as a measure 

of the usefulness of a model, considering the 

relative harm of FPs

Net Benefit =
True Positives

𝑛
−

False Positives

𝑛

𝑝𝑡

1−𝑝𝑡
 

Calibration Curves
Example – Exponential Baseline Hazard

Decision Curves

𝑡 =  3 Years
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Summary:

• GNNs are useful for showing a more natural representation of particle physics data than alternatives, 

such as RNNs

• Shown by improved background rejection in 1-prong Tau ID

• Despite being different fields, problems are very similar at their core (classification)

• There is benefit in using knowledge from one field applied to another!

Next Steps:

• To develop a GNN Survival Model and compare with CNN approach

• To return to physics analysis and utilise knowledge from medical applications of machine learning

Summary and Next Steps

23/05/2025



Thank you for listening
Any questions?



Backup



Hadronic Tau Decay Modes

Hadronic Decay 
Modes

Label
Branching 
Ratio, %

𝜏± → 𝜋±𝜐𝜏 1p0n (11.51 ± 0.05)

𝜏± → 𝜋±𝜐𝜏𝜋0 1p1n (29.93 ± 0.09)

𝜏± → 𝜋±𝜐𝜏 ≥ 2𝜋0 1pXn (10.81 ± 0.09)

𝜏± → 𝜋±𝜋∓𝜋±𝜐𝜏 3p0n (9.46 ± 0.05)

𝜏± → 𝜋±𝜋∓𝜋±𝜐𝜏 ≥ 𝜋0 3pXn (5.09 ± 0.05)

Table: Various 𝜏had decay modes for 1- and 3-prong decays

23/05/2025 Robert McNulty 19



Inputs used for TauID RNN, ATL-PHYS-PUB-2019-033, 
also used in TauJetGraphs GNN

https://cds.cern.ch/record/2688062?ln=en


Variables used in Decay Mode Classification 
DSNN, ATL-PHYS-PUB-2022-044, also 
utilised in TauJetGraphs GNN

Physics object 
kinematic variables

Neutral pion cluster 
variables

https://cds.cern.ch/record/2827111?ln=en
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RNN – ROC Curve and Confusion Matrix

23/05/2025

Identification ROC Curve Decay Mode Classification Confusion Matrix

Plots taken from: [ATL-PHYS-PUB-2022-044]

https://cds.cern.ch/record/2827111?ln=en
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TauJetGraphs – Implementing Medical Analysis Methods
N.B.: Plots made using uncalibrated model scores

23/05/2025

• Applying calibration and decision curve analysis to 

TauJetGraphs can provide useful insights, e.g.,:

• Calibration plots (left) – for 1-prong (top), model 

predictions reflect likelihood ratios well

• Decision curves (right) – for the 3-prong (bottom), 

model shows good benefit in comparison to risks 

(comparing TPs to FPs w.r.t. a score threshold)

• Decision curves serve as a useful metric for comparing 

different models (when evaluated on the same datasets)

Calibration Plots Decision Curves



Age-Related Eye Disease Study Dataset

• Data is from the (publicly available) Age-

Related Eye Disease Study (AREDS) dataset 

[NCBI]

• Each eye has up to four retinal images taken 

over time

• Each image has a time-stamp and 

whether progression is observed or not 

• Clinical information is also available for each 

patient:

• Age (at enrolment)

• Sex (M or F)

• Smoked (Yes or No)

• BMI

Training Validation Testing

Eyes 2785 1392 1392

Patients 1532 755 754

Female (%)
1528 

(54.9%)
782 (56.2%) 794 (57%)

Mean Baseline 
Age (range)

74.4 
(58.4, 87.9)

74.4 
(56.9, 85.5)

74.7
(56.9, 87.8)

Mean Follow-
Up Years 
(Range)

1.3 
(0.5, 8.0)

1.3
 (0.5, 12.0)

1.24
(0.5, 6.0)

Progressing (%) 476 (17.1%) 238 (17.1%) 238 (17.1%)

Mean BMI at 
Baseline 
(Range)

27.5 
(8.9, 58.2)

27.4 
(15.5, 54.9)

27.2
(16.1, 47.1)

Ever Smoked 
(%)

1499 
(53.8%)

755 (55.7%) 689 (49.5%)

Table: Statistical information on the portion of the AREDS dataset used 
in this work. Information taken from [J. Bridge, 2022, PhD Thesis]

Figure: Example longitudinal images of AMD. Each 
row contains images taken from the same eye of a 
patient over time. The first three images in each row 
displays early or intermediate AMD. The fourth 
image for patient a) shows that the patient hasn’t 
progressed, while for b) the patient has progressed 
to an advanced form of AMD. Images are from the 
AREDS dataset. Figure available from [J. Bridge, 
2022, PhD Thesis]

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000001.v3.p1
https://livrepository.liverpool.ac.uk/3167133/
https://livrepository.liverpool.ac.uk/3167133/
https://livrepository.liverpool.ac.uk/3167133/


Age-Related Eye Disease Study Dataset
Signal Stats for Each Year, t

Training Dataset 
(Signal)

Validation Dataset 
(Signal)

Testing Dataset
(Signal)

Count % Count % Count %

1 Year 317 11.4 157 11.3 192 13.8

2 Years 449 16.1 225 16.2 228 16.4

3 Years 460 16.5 232 16.7 231 16.6

Prevalence*
(Total Signal)

476 17.1 238 17.1 238 17.1

*Prevalence is the rate of disease progression from the dataset:
• Event labels determined from final observation (i.e. 1 if progression observed and 0 if censored)
• Calculated as percentage of progressing eyes from total dataset



• AREDS Dataset contains right-censored data, meaning that there are patients 

who were not observed to progress to advanced forms of AMD before they 

left the study

• ‘Censored’ events can only be included in analysis up to the time of 

‘censoring’ – i.e. they must then be ‘hidden’/removed as they provide no 

information past this time

Censored Data

Type of 
Censoring

Definition

Left
Event already happened before patient 
enrolled into study

Right Patient leaves study before event is observed

Interval
Event occurs between two observations and 
exact time is unclear

Figure: Example longitudinal images of AMD. Each row contains images taken 
from the same eye of a patient over time. The first three images in each row 
displays early or intermediate AMD. The fourth image for patient a) shows that 
the patient hasn’t progressed, while for b) the patient has progressed to an 
advanced form of AMD. Images are from the AREDS dataset. Figure available 
from [J. Bridge, 2022, PhD Thesis]

Table: Definitions of each type of censored data; left, right, and interval.

https://livrepository.liverpool.ac.uk/3167133/
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Motivations and Goals

23/05/2025

𝝉𝐡𝐚𝐝 ID (TauJetGraphs) AMD Progression (Survival Models)

Motivations

• BR for 𝜏had (~65%) is ~2 × the BR for 𝜏lep 

(~35%)

• ID is important across several research areas, 

such as:

• 𝐻 →  𝜏𝜏 production CERN-EP-2021-217

• Di-Higgs searches with 𝑏ത𝑏𝜏+𝜏−

• AMD is a degenerative disease – it is likely that all patients will 

progress to an advanced form, given enough time

• There is no cure, but treatments exist which can help slow the 

progression

• Finding out when a patient is likely to progress is 

beneficial, as it allows clinicians to appropriately plan 

treatments and future visits

Goals

• To further study the unification of DMC & ID 

with a GNN: 

• Which should be able to handle 𝜏had 

candidates with 1 and 3 tracks

• Final classifier should be able to classify 5 

decay modes & QCD jets

• To modify, extend, and finalise a Time-Distributed CNN, referred 

to as a Survival Model

• The model should be capable of returning a probability of 

a patient progressing by a given time, t

https://cds.cern.ch/record/2800106?ln=en


Survival Models – Mixed-Effects Layer

• Mixed-effects (ME) layer used to model spatial relationships

• The mixed-effects for the 𝑖𝑡ℎ eye is given by:

𝑋𝑖 =

𝐹1,1 ⋯ 𝐹1,2049

𝐹2,1 ⋯ 𝐹2,2049

𝐹3,1 ⋯ 𝐹3,2049

𝛼1

⋮
𝛼2049

+

1 0
1

𝑡0 − 𝑡1

1

𝑡0 − 𝑡2

1
1

𝑡1 − 𝑡0
0

1

𝑡1 − 𝑡2

1
1

𝑡2 − 𝑡0

1

𝑡2 − 𝑡1
0

𝛽1

𝛽2

𝛽3

𝛽4

+ 𝜖1 𝜖2 𝜖3

Where:

• 𝐹1, 𝐹2, and 𝐹3 are feature vectors extracted by CNN into fixed-effects matrix

• 𝛼 are fixed-effects parameters (learned by the model) 

• 𝑡0, 𝑡1, and 𝑡2 are observation times, with 𝑡0 being initial observation (random-effects matrix, 𝑍)

• 𝛽 are random-effects parameters (learned by the model)

• 𝜖 are unknown random errors

• ME layer results in a single vector, 𝑋𝑖, with relationships between time points modelled using 𝑍 Figure: The mixed-effects layer of the 
model architecture. Figure available 
from [J. Bridge, 2022, PhD Thesis]

Terms:

1. Fixed-effects – models the relationship 

within slices/images

2. Random-effects – models the spatial 

relationship between slices/images

𝑋

https://livrepository.liverpool.ac.uk/3167133/


Saliency Maps
Exponential Model – Progression Observed

𝑡0

t = 1 Year

t = 2 Years

t = 3 Years

𝑡1 𝑡2
Prediction of 

progression at t

Visit #

• Here, each row is the prediction on time progression 

for the same eye across visits (columns)

• I.e., A prediction is made, and the saliency map 

for each input image is generated – each row is 

a different time prediction, and each column is 

a clinical visit, all for the same eye

• Highlighted areas of importance remains consistent 

across each time prediction

• Earlier predictions (e.g., t = 1 Year) have 

brighter pixels at earlier visits



Saliency Map
Exponential Model – No Progression Observed

𝑡0

32

t = 1 Year

t = 2 Years

t = 3 Years

𝑡1 𝑡2
Prediction of 

progression at t

Visit #

• Earlier images contribute less than most recent images to 

the overall prediction

• Same cluster of pixels highlighted across each visit and for 

each predicted progression time

• Fewer regions highlighted than in the progressing eye

𝑡0 𝑡1 𝑡2

Im
ag

eN
et



Survival Models – Kaplan-Meier Curves

Validation Dataset:

Testing Dataset:

Baseline: Exponential Baseline: Weibull Baseline: Gompertz



Survival Models - Output Score (Risk) 
Distributions

Baseline: Exponential Baseline: Weibull Baseline: Gompertz



• Net Benefit calculated using:

Net Benefit =
TP

n
−

FP

n
×

pt

1 − pt

Where TP = # True Positives, FP = # False Positives, n = Number of events, pt = score threshold

An example using the figure:

• A model exists that provides a probability of a patient has a disease:

• If near 1, model is confident they have the disease and they will ask to be treated, and similarly if it is near 0 

then the model is confident that they don’t have the disease and so won’t ask to be treated

• There exists a probability between 0 and 1 where the patient is unsure whether they will forgo treatment

• This threshold probability, pt, is where the benefit of treatment is equal to the expected benefit of 

avoiding treatment. 

• Solving this from the figure => 𝑝𝑡𝑎 + 1 − 𝑝𝑡 𝑏 = 𝑝𝑡𝑐 + 1 − 𝑝𝑡 𝑑

• Becoming:
𝑎−𝑐

𝑑−𝑏
=

1−𝑝𝑡

𝑝𝑡
, where d-b is the consequence of being treated unnecessarily (harm associated with FP 

result), and a-c is the consequence of avoiding treatment when it would have been of benefit (harm from FN 

result)

• “Harm” is considered as the overall effect of negative consequences of a particular decision

Decision Curves – Background

For p = probability of disease, and a, b, c, and d give the value 
associated with each outcome in terms such as quality-adjusted 
life-years. Figure from [doi: 10.1177/0272989X06295361]

https://pubmed.ncbi.nlm.nih.gov/17099194/


Metric Definitions

• Accuracy – The fraction of correctly classified samples (if normalised = True)

• Purity (Precision) – Purity is the measure of how well a classifier avoids incorrectly labelling a 

sample as positive. It's calculated as true positives divided by true positives plus false positives:

•
𝑡𝑝

𝑡𝑝+𝑓𝑝
 where tp is true positive and fp is false positive

• Efficiency (Recall) – Efficiency measures how well a classifier finds all the true positives. It's 

calculated as true positives divided by true positives plus false negatives:

•
𝑡𝑝

𝑡𝑝+𝑓𝑛
 where tp is true positive and fn is false negative

• Background Rejection – The inverse of the Background Selection Efficiency, depending on the Signal 

Selection Efficiency



Glossary

• AMD – Age-related Macular Degeneration

• AREDS – Age-Related Eye Disease Study

• ID – Identification

• DMC – Decay Mode Classification

• 𝝉𝐡𝐚𝐝 - Hadronically decaying τ-lepton

• RNN – Recurrent Neural Network

• DSNN -  DeepSet Neural Network

• GNN – Graph Neural Network

• CNN – Convolutional Neural Network

• ROC Curve - Receiver Operator Characteristic Curve


	Slide 0
	Slide 1: Introduction
	Slide 2: Part I – Particle Identification
	Slide 3: Brief Overview of τ-Leptons at ATLAS
	Slide 4: Problem and Approach - bold italic tau sub bold h bold a. bold d  Identification
	Slide 5: Tau ID – From RNN to GNN
	Slide 6: Tau ID Results – RNN vs GNN
	Slide 7: Part II – Eye-Disease Prognosis
	Slide 8: Brief Overview of Age-related Macular Degeneration
	Slide 9: Age-Related Eye Disease Study Dataset
	Slide 10: Problem and Approach – AMD Survival Model
	Slide 11: Survival Models – Background Information
	Slide 12: Survival Models – Model Overview
	Slide 13: Survival Models – Kaplan-Meier Curves
	Slide 14: Survival Models – ROC Curves With 95% Confidence Intervals
	Slide 15: Survival Models - Calibration and Decision Curves Examples
	Slide 16: Summary and Next Steps
	Slide 17: Thank you for listening Any questions?
	Slide 18: Backup
	Slide 19: Hadronic Tau Decay Modes
	Slide 20
	Slide 21
	Slide 22: RNN – ROC Curve and Confusion Matrix
	Slide 23: TauJetGraphs – Implementing Medical Analysis Methods N.B.: Plots made using uncalibrated model scores
	Slide 24: Age-Related Eye Disease Study Dataset
	Slide 25: Age-Related Eye Disease Study Dataset Signal Stats for Each Year, t
	Slide 26: Censored Data
	Slide 27: Motivations and Goals
	Slide 28: Survival Models – Mixed-Effects Layer
	Slide 29: Saliency Maps Exponential Model – Progression Observed
	Slide 30: Saliency Map Exponential Model – No Progression Observed
	Slide 31: Survival Models – Kaplan-Meier Curves
	Slide 32: Survival Models - Output Score (Risk) Distributions
	Slide 33: Decision Curves – Background
	Slide 34: Metric Definitions
	Slide 35: Glossary

