

The FLASH experiment

HEP Meeting 2025 23/05/2025

Paolo Beltrame

Outline

- A. Physics investigation
- B. Status design and plan
- C. UoL involvement in FLASH

\mathcal{L} Axions

- QCD sector needs a solution for the "strong-CP puzzle"
 - Distribution of quarks in $n \Rightarrow$ electric dipole moment $|\theta| \lesssim 10^{-10}$ (EDM)
 - Experimentally: $|\theta| \le 10^{-10}$

 \Rightarrow Quantity θ not a parameter but a field a (the axion)

 $\mathscr{L}_{QCD} \supset \overset{f_a}{\theta} \tilde{G} G \to \frac{a}{f_a} \tilde{G} G$ Peccei, Quinn, PRL 38 (1977) 1440 Weinberg, PRL 40 (1978) 223 Wilczek, PRL 40 (1978) 279 $\mathscr{L} \supset g_{a\gamma} a \mathbf{E} \cdot \mathbf{B} + g_{af} (\nabla a) \cdot \mathbf{S} + g_{EDM} a \mathbf{S} \cdot \mathbf{E}$

 $|A| < G_{10^{-10}}$

Coupling of the axion with the photon

Haloscope searches

"Wavy" Light Dark Matter

Interaction with the EM field

Pseudoscalar Dark Matter Axions, ALPS, Majoron

Phys. Rev. D 104 095029, CERN-TH-2021-04 arXiv:2105.01406, Physics of the Dark Universe 42 (2023) 101370, Living Rev. Relativity 21 (2018), 1

FLASH: Resonance Cavity

FINUDA magnet for Light Axion Search Haloscope

- Range $\nu_c \sim (117-360)~MHz$: cosmic axions of masses $\sim 10^{-6}~eV$
- Resonant frequency tunable on the mode $T\!M_{010}$ for the axion search
- Two cylindrical resonant cavities of different volumes, each with its tuning system
- The larger cavity $L = 1200 \ mm$ and $R = 1050 \ mm$

"The future search for low-frequency axions and new physics with the FLASH resonant cavity experiment at Frascati National Laboratories" Physics of the Dark Universe 42 (2023) 101370

FLASH: Cryogenics

FINUDA magnet for Light Axion Search Haloscope

- Cryostat and cooled at $4.5 \ K$, using liquid helium
 - External stainless steel vacuum vessel, aluminum-alloy radiation shield,
 ~ 70 K by cold gaseous helium
 - Cooled in contact with pipes in which the helium flows

"The future search for low-frequency axions and new physics with the FLASH resonant cavity experiment at Frascati National Laboratories" Physics of the Dark Universe 42 (2023) 101370

FLASH: Cryogenic amplifiers

FINUDA magnet for Light Axion Search Haloscope

- Superconducting QUantum Interference Device (SQUID)
 => Microstrip SQUID Amplifier (MSA)
- Low-noise, low-power-dissipation radio frequency and microwave amplifier
- Ultracryogenic temperatures, noise scales with the temperature down to $200 300 \ mK$

Characterization of noise and gain variation on T in autumn (*4 K* in Trento, *mK* in Pisa, *1* to *4 K* in Camerino)

University of Liverpool responsible for designing the magnetic shielding of the SQUID, to be tested in Camerino with a DC magnetic field

Design Study and R&D for the TDR

Approved by INFN in Sept. 2024 \Rightarrow TDR ready in 2026

- Six WP ranging from Physics reach to old FINUDA detector and magnet decommissioning
- WP4: Responsibility for Signal Amplification and DAQ

- INFN Pisa
- INFN Trento
- Mainz University
- Università di Camerino
- University of Liverpool

• WP5: Responsibility for Data Analysis and Computing

9

Cloud

Project timeline

• **2025**

- FINUDA decomissioning
- Design FLASH and R&D
- Formalisation of FLASH Collaboration

• 2026

- Certification and maintenance of the cryogenic system
 and magnet
- Design FLASH
- Fabrication 500 MHz FLASH cavity prototype (Bonn University)
- Protoype characterization at 4K

• **2027**

- Technical Design Report
- Call of tender for cavity cryostat and RF cavity
- 2028 2030 Start fabrication & Data Taking

FLASH Physics reach

Axion searches

Physics reach "Exotic" models

Physics of the Dark Universe 42 (2023) 101370

Contents lists available at ScienceDirect

Physics of the Dark Universe

journal homepage: www.elsevier.com/locate/dark

Full Length Article

The future search for low-frequency axions and new physics with the FLASH resonant cavity experiment at Frascati National Laboratories

David Alesini ^a, Danilo Babusci ^a, Paolo Beltrame ^b, Fabio Bossi ^a, Paolo Ciambrone ^a, Alessandro D'Elia ^{a,*}, Daniele Di Gioacchino ^a, Giampiero Di Pirro ^a, Babette Döbrich ^c, Paolo Falferi ^d, Claudio Gatti ^a, Maurizio Giannotti ^{e,f}, Paola Gianotti ^a, Gianluca Lamanna ^g, Carlo Ligi ^a, Giovanni Maccarrone ^a, Giovanni Mazzitelli ^a, Alessandro Mirizzi ^{h,i}, Michael Mueck ^j, Enrico Nardi ^{a,k}, Federico Nguyen ¹, Alessio Rettaroli ^a, Javad Rezvani ^{m,a}, Francesco Enrico Teofilo ⁿ, Simone Tocci ^a, Sandro Tomassini ^a, Luca Visinelli ^{o,p}, Michael Zantedeschi ^{o,p}

Thanks to all My & Olaborators and to the audience!

Backup

Axions

Axions

• Mass

$$m_a = 5.70(7) \left(\frac{10^{12} GeV}{f_a}\right) \mu eV \simeq \frac{m_\pi f_\pi}{f_a}$$

• Coupling

$$g_{a\gamma\gamma} = \frac{\alpha_{em}}{2\pi f_a} \left(\frac{E}{N} - 1.92(4)\right)$$

• Lifetime

$$\Gamma_{a \to \gamma\gamma} = \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi} = 1.1 \times 10^{-24} s^{-1} \left(\frac{m_a}{eV}\right)^5$$

Cold axions as dark matter

Gravitational Waves searches

- Gravitational Waves (GWs) at E ~ scale of grand unification \Rightarrow frequencies in the MHz and GHz regime today
- Inverse Gertsenshtein effect which describes the conversion of GWs into photons in the presence of ${\it B}$
 - ⇒ Distortion of the CMB, which can serve as a detector for MHz to GHz gravitational wave sources active before reionization

Sikivie's Haloscope

Sikivie Phys. Rev. D 32,11 (1985)

$$\nabla^2 E - \partial_t^2 E = -g_{a\gamma\gamma} B_0 \partial_t^2 a$$

• Solving the equation inside a cylindrical resonant cavity, the signal power is

$$P_{\rm sig} = \left(g_{\gamma}^2 \frac{\alpha^2}{\pi^2} \frac{\hbar^3 c^3 \rho_a}{\Lambda^4}\right) \times \left(\frac{\beta}{1+\beta} \omega_c \frac{1}{\mu_0} B_0^2 V C_{mnl} Q_L\right)$$

 $\boldsymbol{\beta}$ antenna coupling to cavity

V cavity volume

 C_{mnl} mode dependent factor ~ 0.6 for TM₀₁₀

Q_L cavity "loaded" quality factor

Istituto Nazionale di Fisica Nucleare

Magnet from FINUDA

FINUDA Fisica Nucleare a DAΦNE

B [T]	1.1
R [m]	1.4
L [m]	2.2

Cryogenic plant put back into operation Jan the 19th 2024

- FINUDA was cooled down to $4\ K$
- Energised with a current of $2706\,A$
- Generating a magnetic field of $1.05\ T$

Resonance Cavity

Itinerant Photon Detection

SQUID Radio Frequency Amplifiers

Superconducting Quantum Interference Device

- The most sensitive detector of magnetic flux available
- Low power dissipation and unsurpassed noise properties
- Input signal converted to current => flux in the SQUID, generates output voltage $V_{\rm O}$
 - Function of the applied flux, the SQUID loop changes => the voltage across the current-biased SQUID changes periodicity Φ_0

Coupling of the axion with the photon

Probing the Full QCD-Axion Band Next 10 Years

ERC GravNet budget

Total ERC funds at INFN 3.75 Meuro:

Expected costs:

• • •

- 0.5 Meuro from timesheet
- 0.7 Meuro for recruitment
- 1.5 Meuro full capitalized costs (FLASH detector)
- 0.25 Meuro consumables
- 0.05 Meuro travel + audit.

FLASH 1.8 Meuro

FINUDA cost (magnet cryogenics + decommissioning) 100 keuro

Quantum Sensing (COLD Lab) 200 keuro Audit 30 keuro

Additionally:

. . .

DAFNE Cryogenics Refurbishment (with LNF overheads)