



# MuEDM experiment

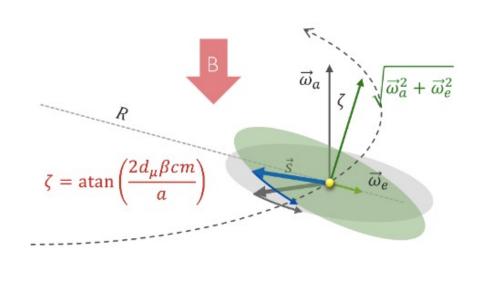
Joe Price

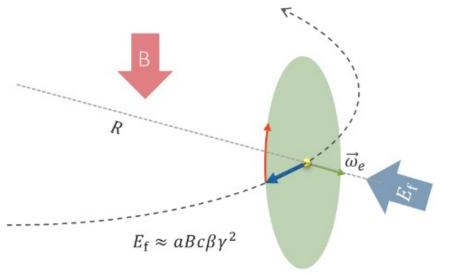
## MuEDM @ PSI – frozen spin

- Permanent EDMs give an additional source of CP violation
- Can search for them directly in a storage ring:

$$\begin{split} \vec{\Omega} &= -\frac{q}{m} \left[ a\vec{B} - \frac{a\gamma}{(\gamma+1)} \left( \vec{\beta} \cdot \vec{B} \right) \vec{\beta} - \left( a + \frac{1}{1-\gamma^2} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right] & \text{AMM} \\ &- \frac{\eta q}{2mc} \left[ c\vec{\beta} \times \vec{B} + \vec{E} - \frac{\gamma \left( \vec{\beta} \cdot \vec{E} \right) \vec{\beta}}{(\gamma+1)} \right], & \text{EDM} \\ & \text{Term} \end{split}$$
Relativistic spin precession of a charged particle (Thomas-BMT equation)

Muon momentum, E-field and B-field form an orthogonal basis:  $ec{eta}\cdotec{B}=ec{eta}\cdotec{E}=0$ 


By applying an appropriate radial E-field to the muon we remove the AMM term.

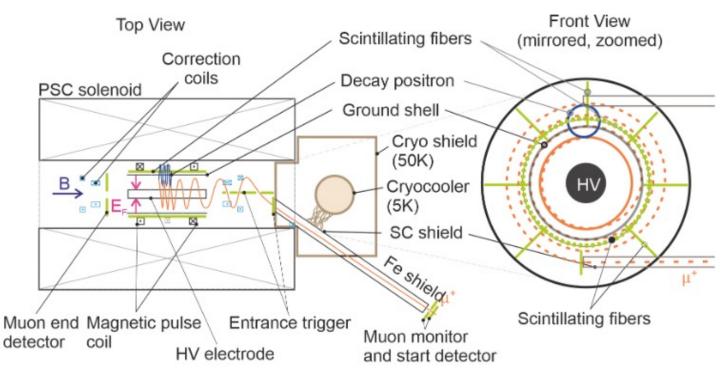

$$a\vec{B} = \left(a - \frac{1}{\gamma^2 - 1}\right)\frac{\vec{\beta} \times \vec{E}}{c}$$

• Any observed spin precession would be due to a non-zero EDM.

#### Frozen spin - visual





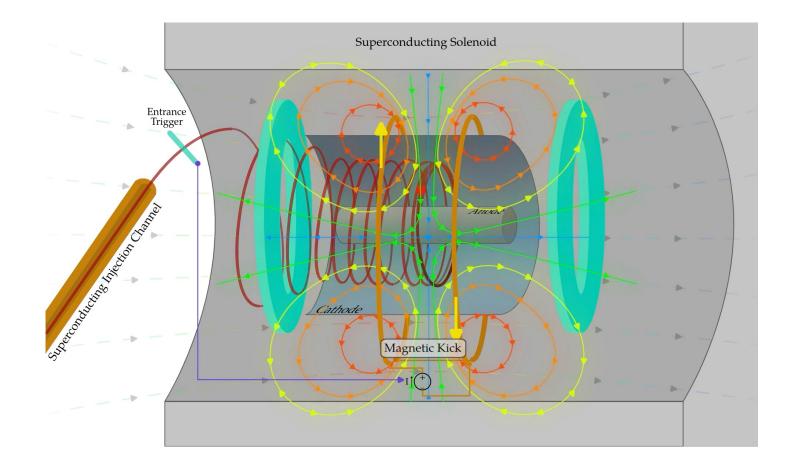



- Without frozen spin condition an EDM tilts the precession plane
- This is **Fermilab-style** EDM search

- With frozen spin condition an EDM is the only cause of the precession
- This is **PSI-style** EDM search
- Advantage of frozen spin: Every positron is useful!

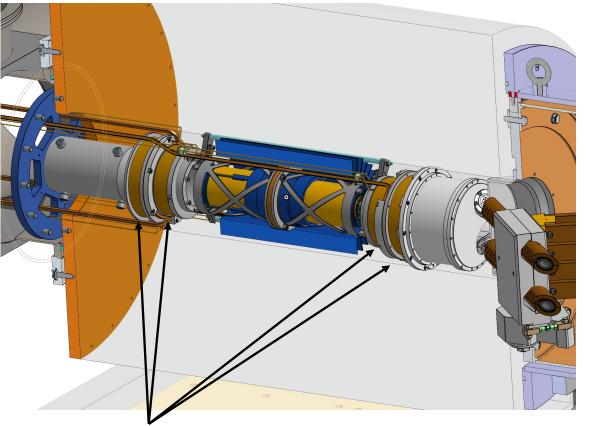
#### MuEDM@PSI - overview






- Store muons one at a time, freeze spin, observe change in polarisation vector due to muon EDM by measuring positrons
- Plan to run in 2 different phases with different muon momenta
  - Phase I ( $|p_{\mu}| \approx 28$ MeV) and Phase II ( $|p_{\mu}| \approx 125$ MeV)
- Projected sensitivity
  - Phase I:  $\sigma(d_{\mu}) \leq 3 \times 10^{-21}$ e.cm
  - Phase II:  $\sigma(d_{\mu}) \leq 6 \times 10^{-23}$  e.cm

arxiv 2501.18979 (EPJC to follow)

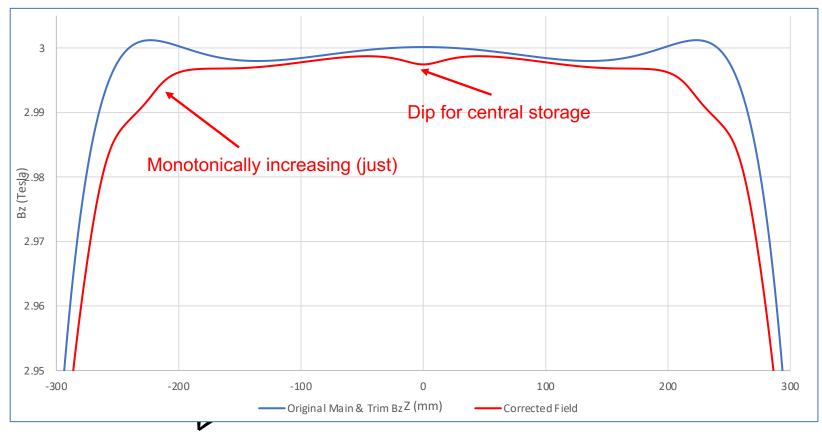

#### Magnetic kicker





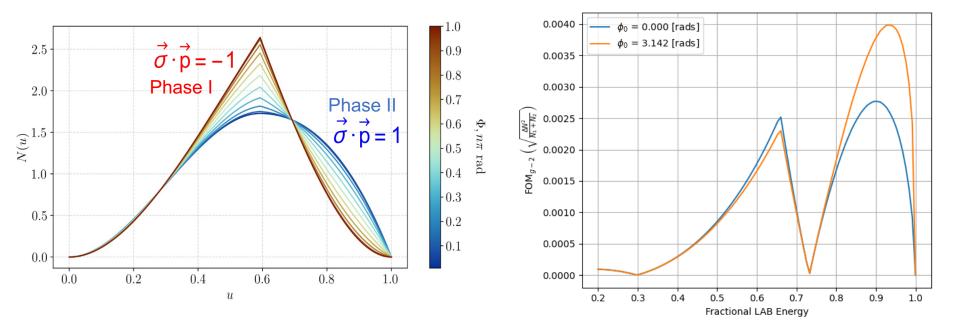
- Magnetic longitudinal 'kick' to keep injected muons in central orbit
- Trigger configured in 2024 test beam storage tests in 2025

#### Magnetic field - storage




Design of correction coils finalised in 2024/5

- Modified 'correction coils' to ensure storage in central B-field
- Challenging windings for coils due to heat transfer and vacuum requirements
- UK deliverable Daresbury Laboratory


#### Magnetic field - storage





- Modified 'correction coils' to ensure storage in central B-field
- Challenging windings for coils due to heat transfer and vacuum requirements
- UK deliverable Daresbury Laboratory

#### Demonstrating frozen spin method



- Stored anti-muons will decay to positrons
- Phase-I goal: demonstrate frozen spin method by ensuring no g-2 style oscillation
- Need to know which positrons which are most sensitive to g-2
- Momentum of most sensitive positrons shown above, also optimised for longitudinal angle – Work done here at Liverpool

## Timeline 2025



| Beamtime programm 2025 in piE1       |       | Nov  |    |    |    |    | December 2025 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|--------------------------------------|-------|------|----|----|----|----|---------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|                                      |       |      | 26 | 27 | 28 | 29 | 30            | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
|                                      | hours | days |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Initial mounting and alignement      | 48    |      |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Beam tuning                          | 12    |      |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Measure spiral injection with TPC    | 72    | 5.5  |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| remove TPC                           | 12    |      |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Measure sprial transmission          | 60    | 3    |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Modification to muSR stopping target | 24    |      |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Beam tuning                          | 6     |      |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Measure muSR spin orientation        | 108   | 5.8  |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Modification to magnetic pulse       | 36    |      |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Measure stopping efficiency          | 108   | 6    |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| modify to SciFi tests                | 120   |      |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Measrue SciFi performance            | 72    | 8    |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Unmounting                           | 6     |      |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| total days                           |       | 29   |    |    |    |    |               |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |

- Test beam in November/December 2025
- Prepare for data taking 2026!
- Sci-Fi tracker to give sensitivity to AMM and EDM...





#### Conclusions





#### Liverpool members

- Joe Price (Simulation coordinator)
- Fedor Ignatov
- Dominka Vasilikova
- Themis Bowcock
- Joost Vossebeld
- MuEDM will measure the muon EDM in two stages, improving on the current sensitivity by 2, then 4 orders of magnitude
- UK responsible for the correction coils (Lancaster)
- Liverpool's major input has been to simulation, optimising the placement of the sci-fi trackers.
- Fedor joined in April, working on tracking
- Applying for funding for the tracker build for phase II...