

Measurements of jet quenching using hadron-jet observables at ALICE

Daniel Jones 23rd May 2025 The ALICE Experiment

Supervisors: Dr Jaime Norman, Prof. Marielle Chartier

UNIVERSITY OF E LIVERPOOL

ALICE and Heavy ion collisions

- A Large Ion Collider Experiment: Investigate the extreme conditions which occur during the collisions of lead ions at relativistic energies
 Formation of a Quark-Gluon Plasma
 - deconfined state of quarks and gluons
- Jets: Collimated sprays of high energy hadrons from a high- Q^2 scattering
 - pp: Act as a probe of QCD
 - Pb-Pb: Study how jets interact with the medium • Jet Quenching!

Semi-inclusive hadron-jet measurements

- We want to explore jet quenching across the full LHC phase space
 - Specifically low-p_T and large R
- Uncorrelated background is huge in these regions
 - Solution: Semi-inclusive hadron-jet measurements!
 - Cleanly select events based on high p_T trigger
- Exciting results from Run 2!
 - First observation of a low p_T and large angle enhancement in Pb-Pb
- Open questions:
 - To what extent is the medium response (e.g. the wake) responsible?
 - Could single hard scatterings still play a role?
- Motivation → study recoil jet substructure

Phys. Rev. Lett. 133, 022301

Hadron-jet in Run 3

- Measure the yield of charged particle jets recoiling from a **high-***p***_T hadron** as a function of:
 - The jet transverse momentum $(p_{T,jet})$
 - The trigger-jet opening angle ($\Delta \phi$)
 - The Standard Axis Winner-Takes-All (WTA) axis separation (ΔR)
- This difference provides a good probe of the soft content of a jet
 - JEWEL studies suggest that this observable is sensitive to medium response effects
- Datasets:
 - pp: 2022 data, 13.6 TeV
 - Pb-Pb: 2023 data, 5.36 TeV

$$\Delta R = \sqrt{(\eta_{SA} - \eta_{WTA})^2 + (\phi_{SA} - \phi_{WT})^2}$$

$\Delta_{\mbox{recoil}}$ - approach to uncorrelated background yield subtraction

Take the difference between two signal and reference

$$\Delta_{\text{recoil}} = \frac{1}{N_{\text{trig}}} \frac{d^3 N_{\text{jet}}}{dp_{\text{T,jet}}^{\text{ch}} d\Delta \phi d\Delta R} \bigg|_{TT_{\text{s}}}$$

- Advantages:
 - Data-driven subtraction of uncorrelated background yield
 - Perturbatively calculable

 c_{ref} : normalisation factor - derived from data

Take the difference between two semi inclusive, trigger normalised jet

Raw semi-inclusive hadron+jet yield in Pb-Pb

$$= \frac{1}{N_{\text{trig}}} \frac{\mathrm{d}^3 N_{\text{jet}}}{\mathrm{d} p_{\mathrm{T,jet}}^{\mathrm{ch}} \mathrm{d} \Delta \phi \mathrm{d} \Delta R} \bigg|_{TT_{sig}} - c_{ref} \frac{1}{N_{\mathrm{trig}}} \frac{\mathrm{d}^3 N_{\mathrm{jet}}}{\mathrm{d} p_{\mathrm{T,jet}}^{\mathrm{ch}} \mathrm{d} \Delta \phi \mathrm{d} \Delta R} \bigg|_{TT_{ref}}$$

Next steps

- Raw distributions must be unfolded:
 - pp isolate effects from the detector
- We then calculate systematic uncertainties:
 - Tracking efficiency
 - Unfolding procedure
 - Reference normalisation
- **Current status:**
 - Pb-Pb: Work in progress
 - pp: Preliminary results as a function of p_T !

Pb-Pb - isolate effects from the detector and background fluctuations

Fully corrected semi-inclusive hadron+jet yield - pp

\rightarrow PYTHIA describes the data well within uncertainties

Daniel Jones (University of Liverpool)

• Measure $\Delta_{recoil}(p_T)$ from 7 GeV/c to 110 GeV/c for R = 0.2 and R = 0.4

Fully corrected yield ratio, (R = 0.2)/(R = 0.4) - pp Robust jet shape observable - precise theory and experiment PQCD: JHEP 04 (2015) 039

Phys.Rev.C 110 (2024) 1, 014906

Daniel Jones (University of Liverpool)

- Good agreement with Run 2 result
- Substantial improvement in the uncertainties with respect to Run 2
- Agreement between inclusive jets and semi-inclusive at high p_T
 - Enhancement in R = 0.2 recoil jet yield at low p_{T}
 - Bias towards NLO effects when $p_{T,jet} < p_{T,trig}$?
 - Jet splitting?

Service task: ITS3 babyMOSS chip testing

- As part of the next LHC long shutdown (2026-28), the ALICE silicon pixel Inner Tracking System (ITS) will receive it's next upgrade: ITS3
 - Use of curved pixel sensors for the first truly cylindrical detector geometry
 - Stitching technology used to create wafer-scale sensors: MOSS - the first stitched MAPS in HEP
- For my service task, I have been testing the single unit of the MOSS prototype called **babyMOSS**
 - We have been investigating how the Fake-Hit rate is affected by the Strobe Length, front-end biasing currents and sensor backbias voltages
 - Impedance and power ramp tests to come!

TPSCo 65nm technology

Daniel Jones (University of Liverpool)

Summary and outlook

- **ALICE in Run 3**
 - ΔR_{axis} observable
- We have fully corrected results as a function of p_T in pp collisions including a yield ratio for different jet R
 - Possible observation of NLO effects when $p_{T,jet} < p_{T,trig}$
- Aim to finalise pp results over the next few months
- In Pb-Pb: additional challenges due to background fluctuations. Framework development for Run 3 data ongoing
 - Stay tuned!

Good progress towards a measurement of a hadron-jet correlations at

• This would be the first measurement of recoil jet substructure - using the

Work presented at Hard Probes 2024, Nagasaki

