# FASER Liverpool : May Update (2<sup>nd</sup> May 2025)

**Sinead Eley** 

#### ALPtrino : Recap

- Using ABCD approach to estimate background due to geometric muons in signal region
- Consider each energy bin in each region independently
  - I.e. Each bin becomes the signal region in its own ABCD
- Need to account for the number of neutrinos in each bin
  - Correct for this using neutrino MC
- Apply correction factor
  - Need as this uses an inverse timing cut relative to ALPtrino
- Apply both statistical errors and systematic errors to the results

### **Systematics**

- Different generators used in production of neutrino MC samples
  - EPOS-LHC is the nominal for light hadrons
  - POWHEG+Pythia is the nominal for charm hadrons
- Each generator differs in their theoretical modelling
  - Have other samples from:
    - SIBYL, QGSJET, Pythia-forward & different POWHEG tunes
- Uncertainty given by the spread of the event generator predictions
  - E.g. Do the same calculations on nominal and uncertainty samples
    - Take the difference between the nominal result and each of the systematic results
    - Find the largest difference
      - That's your uncertainty
    - This is done for both light and charm, respectively
    - Combine light and charm in quadrature to get overall systematic uncertainty

#### **Correction Factor**

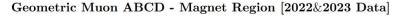
- As inverted timing cut is applied need to correct for this
- Using a correction factor 'f', can apply this to data to get an overall prediction
  - f = ratio of events that pass a cut of timing > 20 pC, to those that are < 20 pC</li>

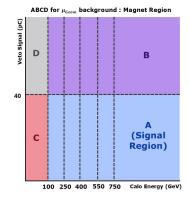
$$f = \frac{N_{>20pC}}{N_{<20pC}}$$

- Factor is calculated for each year of data independently and applied before combining all years to get a total prediction

#### Timing Correction Factor [2022 Data]

| Timing Cut    | Events Passing Cut | Timing Correction Factor | Stat. Err      |
|---------------|--------------------|--------------------------|----------------|
| Over 20 pC    | 41530425           | -                        | -              |
| Under 20 pC   | 109643233          |                          | -              |
| Timing Factor | -                  | 0.379                    | $6.902e^{-05}$ |

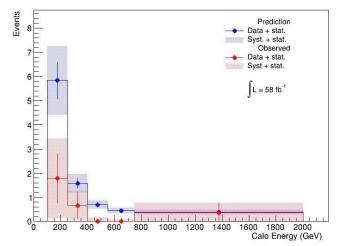

#### Timing Correction Factor [2023 Data]


| Timing Cut    | Events Passing Cut | Timing Correction Factor | Stat. Err      |
|---------------|--------------------|--------------------------|----------------|
| Over 20 pC    | 48522011           |                          |                |
| Under 20 pC   | 129812028          |                          | -              |
| Timing Factor | —                  | 0.374                    | $6.289e^{-05}$ |

#### **Magnet Region**

- Magnet Region Cuts:
  - PS1 nMIP >10 0
  - PS ratio < 1.50
- Prediction is a lot larger than observed in bin 1
  - Perhaps another background that needs to be 0 taken into account
- Higher energy bins
  - <1 event predicted and 0 events observed 0
- Final bin prediction and observed agree very nicely

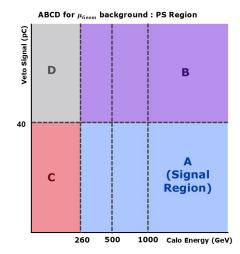







| ABCD Region    | Calo Energy (GeV) | Data  | $\nu_{MC}$ | Data - $\nu_{MC}$ | Prediction | Stat. Err | ν Syst. Err [Upper] | ν Syst. Err [Lower] | Observed | Stat. Err | ν Syst. Err [Upper] | ν Syst. Err [Lower] |
|----------------|-------------------|-------|------------|-------------------|------------|-----------|---------------------|---------------------|----------|-----------|---------------------|---------------------|
| A <sub>0</sub> | 100               |       |            |                   | 5.837      | 0.757     | 0.476               | 1.114               | 1.787    | 1.013     | 0.407               | 1.222               |
| A <sub>1</sub> | 250               |       | -          | 1.00              | 1.576      | 0.205     | 0.128               | 0.301               | 0.662    | 0.563     | 0.143               | 0.141               |
| A <sub>2</sub> | 400               | 220   |            |                   | 0.699      | 0.092     | 0.057               | 0.133               | 0        | 0.099     | 0.058               | 0.111               |
| A <sub>3</sub> | 550               |       | -          |                   | 0.448      | 0.059     | 0.037               | 0.085               | 0        | 0.050     | 0                   | 0.059               |
| A <sub>4</sub> | 750               | -     | -          |                   | 0.392      | 0.052     | 0.032               | 0.075               | 0.377    | 0.381     | 0.004               | 0.060               |
| B <sub>0</sub> | 100               | 19000 | 5.380      | 18994.620         | -          | -         | -                   | -                   | -        | -         |                     | -                   |
| $B_1$          | 250               | 5130  | 1.346      | 5128.654          | -          | -         |                     | -                   |          |           | -                   | -                   |
| $B_2$          | 400               | 2274  | 0.528      | 2273.472          | -          | -         | -                   | -                   | -        | -         | -                   | -                   |
| $B_3$          | 550               | 1458  | 0.298      | 1457.702          | -          | -         | -                   | -                   | -        | -         |                     | -                   |
| $B_4$          | 750               | 1277  | 0.238      | 1276.762          | -          | -         | -                   | -                   | -        |           | - 1                 | -                   |
| С              | 25                | 78    | 6.840      | 71.160            | 100        | <u></u>   |                     | <u></u>             | 1221     |           |                     | <u> </u>            |
| D              | 25                | 87122 | 15.068     | 87106.932         | -          |           |                     |                     | -        | -         |                     | -                   |

**Note:** Prediction and Observed values have been multiplied by a correction factor f


 $f^{2022} = 0.379, \ f^{2023} = 0.374,$ 



#### Magnet Region : Geometric Muon Bkg Estimate

### **PS Region**

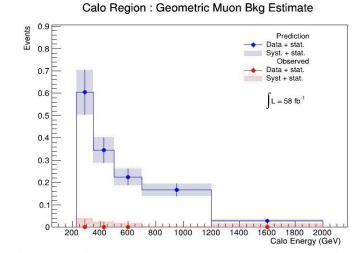
- PS Region Cuts:
  - PS1 nMIP >10
  - **PS ratio > 4.5**
- Less than 1 event predicted in PS region
  - 0 events observed



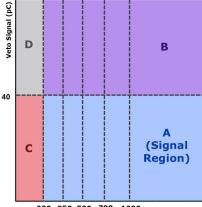


#### PS Region : Geometric Muon Bkg Estimate

Geometric Muon ABCD - PS Region [2022&2023 Data]


| ABCD Region    | Calo Energy (GeV) | Data     | VMC   | Data - $\nu_{MC}$ | Prediction | Stat. Err  | ν Syst. Err [Upper] | $\nu$ Syst. Err [Lower] | Observed | Stat. Err | ν Syst. Err [Upper] | $\nu$ Syst. Err [Lower] |
|----------------|-------------------|----------|-------|-------------------|------------|------------|---------------------|-------------------------|----------|-----------|---------------------|-------------------------|
| A <sub>0</sub> | 260               | 2        | 120   |                   | 0.141      | 0.068      | 0.010               | 0.006                   | 0        | 0.037     | 0.008               | 0.015                   |
| A <sub>1</sub> | 500               | -        |       | -                 | 0.080      | 0.039      | 0.005               | 0.003                   | 0        | 0.029     | 0.006               | 0.017                   |
| $A_2$          | 1000              | $\simeq$ | -     | _                 | 0.018      | 0.009      | 0.001               | 0.001                   | 0        | 0         | 0                   | 0.008                   |
| B <sub>0</sub> | 260               | 1188     | 0.130 | 1187.870          |            | -          | -                   | -                       | -        | -         | ( - )               | -                       |
| $B_1$          | 500               | 675      | 0.050 | 674.950           | -          | -          | -                   | -                       | 50       |           |                     |                         |
| $B_2$          | 1000              | 153      | 0.017 | 152.983           | -          | -          | -                   | -                       | -        | -         | -                   | -                       |
| С              | 25                | 5        | 0.234 | 4.766             |            | -          | =                   | -                       |          | -         |                     | -                       |
| D              | 25                | 15071    | 2.455 | 15068.545         | -          | -          | <u></u>             | -                       | _        | _         | -                   |                         |
|                | Natas I           | Dund     | atio  | and O             | hanne      | d and have | a harra haar        | multiplied              | hara     | anna at:  | an factor f         |                         |

**Note:** Prediction and Observed values have been multiplied by a correction factor f


$$f^{2022}=0.379,\,f^{2023}=0.374,\,$$

### **Calo Region**

- Calo region cuts:
  - **PS1 nMIP < 10**
- Less than 1 event predicted in all bins
  - 0 events observed in all bins

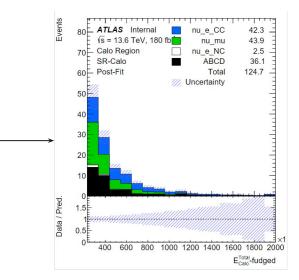


#### ABCD for $\mu_{Geom}$ background : Calo Region



Geometric Muon ABCD - Calo Region [2022&2023 Data]

| ABCD Region    | Calo Energy (GeV) | Data   | VMC   | Data - $\nu_{MC}$ | Prediction | Stat. Err | ν Syst. Err [Upper] | $\nu$ Syst. Err [Lower] | Observed | Stat. Err | $\nu$ Syst. Err [Upper] | $\nu$ Syst. Err [Lower |
|----------------|-------------------|--------|-------|-------------------|------------|-----------|---------------------|-------------------------|----------|-----------|-------------------------|------------------------|
| A <sub>0</sub> | 230               |        | -     |                   | 0.604      | 0.100     | 0.007               | 0.005                   | 0        | 0.037     | 0.012                   | 0.008                  |
| A <sub>1</sub> | 350               | 10-    | 100   |                   | 0.345      | 0.057     | 0.004               | 0.003                   | 0        | 0.023     | 0.008                   | 0.004                  |
| A <sub>2</sub> | 500               | -      | - 1   | -                 | 0.225      | 0.037     | 0.003               | 0.002                   | 0        | 0.017     | 0.004                   | 0.009                  |
| A <sub>3</sub> | 700               | 10-    | 10-   | -                 | 0.167      | 0.028     | 0.002               | 0.001                   | 0        | 0         | 0                       | 0.004                  |
| A <sub>4</sub> | 1200              | -      | -     | _                 | 0.028      | 0.005     | 0.000               | 0.000                   | 0        | 0.017     | 0.004                   | 0                      |
| B <sub>0</sub> | 230               | 5858   | 0.058 | 5857.942          | -          | -         | -                   | -                       | -        | -         | -                       | -                      |
| $B_1$          | 350               | 3340   | 0.021 | 3339.979          | -          | -         | -                   | -                       | -        | -         | -                       | -                      |
| B <sub>2</sub> | 500               | 2184   | 0.012 | 2183.988          | 1.000      | -         | -                   | -                       | -        |           | -                       | -                      |
| B <sub>3</sub> | 700               | 1623   | 0     | 1623              | 122        | -         |                     |                         | -        | -         | -                       |                        |
| B <sub>4</sub> | 1200              | 275    | 0     | 275               | -          | -         | -                   | -                       | -        | -         | -                       | -                      |
| С              | 25                | 38     | 0.396 | 37.604            | 12         | -         |                     |                         | -        | _         | -                       | _                      |
| D              | 25                | 136909 | 3.631 | 136905.369        | -          | -         | -                   | - 1                     | -        | -         | -                       | -                      |

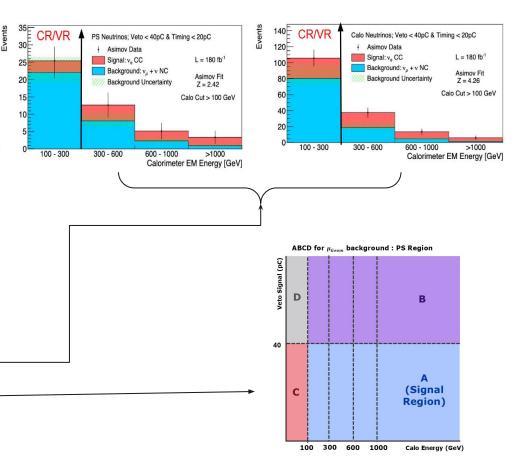

**Note:** Prediction and Observed values have been multiplied by a correction factor *f* 

$$f^{2022} = 0.379, f^{2023} = 0.374,$$

230 350 500 700 1200 Calo Energy (GeV)

## **TREx Fitter**

- Learning how to use TREx fitter to get significance and include elec nu CC signal (with elec NC and muon nu as background)
  - Can also add geom muon ABCD as a background
- Got this working for me locally
  - Can now plot a significance for all regions
  - There is an ability to add an ABCD estimate for background too
    - Will add the correct binning for this to the fitter
      - As well as ABCD data
    - Potentially will add a tree write out with the needs of TREx in mind to the RDF




### Muon Neutrino Background

- After the Physics meeting a few weeks ago, the ALPtrino team have been coming up with a plan of attack for using a data driven method to account for muon neutrino background
- With the plan we have decided to use:

$$\Phi_{data}\left(\frac{q}{p},\eta\right) = \Phi_{MC}\left(\frac{q}{p},\eta\right) \cdot \text{CORRECTION}\left(\frac{q}{p}\right)$$

- Use electronic neutrino result as flux measurement
- Need a data to MC ratio (i.e. repeat plot from electronic neutrino analysis with 24' data)
- Binning matching electronic neutrino analysis
  - Would have to recalculate geom. Muon neutrinos for this binning \_\_\_\_\_
  - Use 100-300 bin as a CR



### Summary

- ABCD method seems to work well
  - Will likely need adjusting once control regions and signal regions are decided on
    - These will be necessary for a data driven muon neutrino background estimate
  - Can adjust regions in ABCD accordingly
- Can run TREx Fitter now to get significance for combination of regions
  - Using John's extra script to extra ABCD background can also get the significance taking into account the ABCD for a region