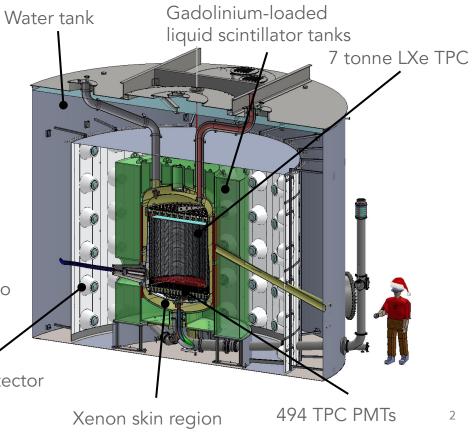
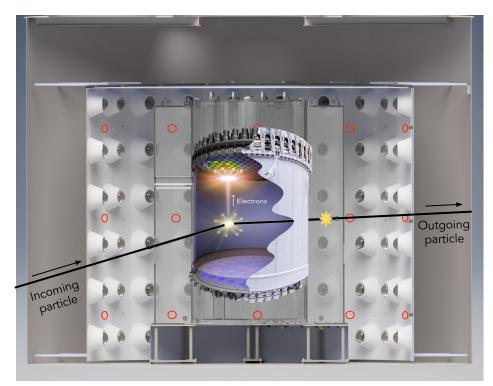


Development of the Optical Calibration System for the Outer Detector of LUX-ZEPLIN


Harvey Birch (MPhil Student) Supervised by: Dr. Sergey Burdin and Dr. William Turner

LUX-ZEPLIN dark matter direct detection experiment

- LZ is a Generation 2 dark matter direct detection experiment.
- The detector is currently being commissioned at <u>SURF</u> in South Dakota, USA. Planning to start taking data in Summer 2020.
- Dual-Phase Liquid Xenon Time Projection Chamber to detect WIMPs.
- The TPC will be surrounded by a three component veto system, which will be used to reject and characterise background radiation from the environment.


120 Outer Detector PMTs

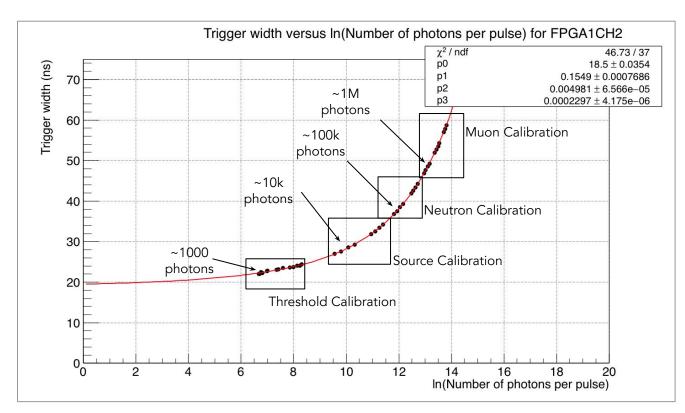
Outer Detector Optical Calibration System

- A xenon skin layer will be used to veto background gamma radiation and shield TPC.

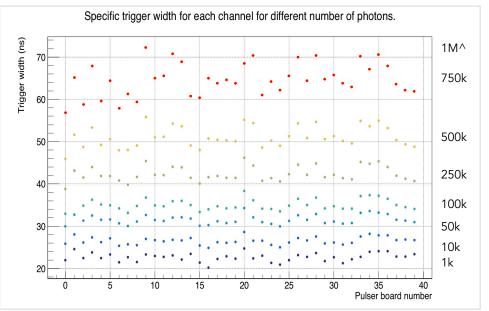

- The Outer Detector (Scintillator tanks & water tank) will be used to veto neutron and muon background signals.
- LZ will use an Optical Calibration System to monitor and calibrate the OD PMTs.
- 30 injection points situated within the array of OD PMTs.
- 5 injection points situated beneath the scintillator tanks directed upwards will monitor the LS and acrylic.

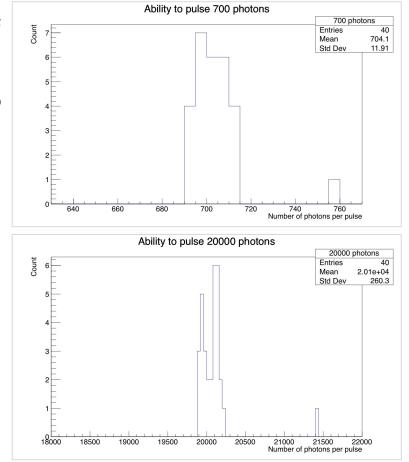
Outer Detector render. Courtesy of Dr. W. Turner

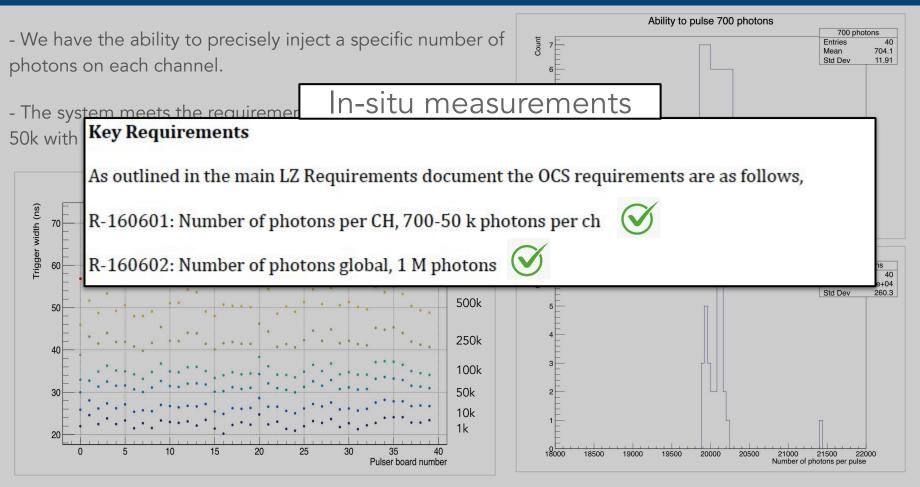
OCS installation and testing

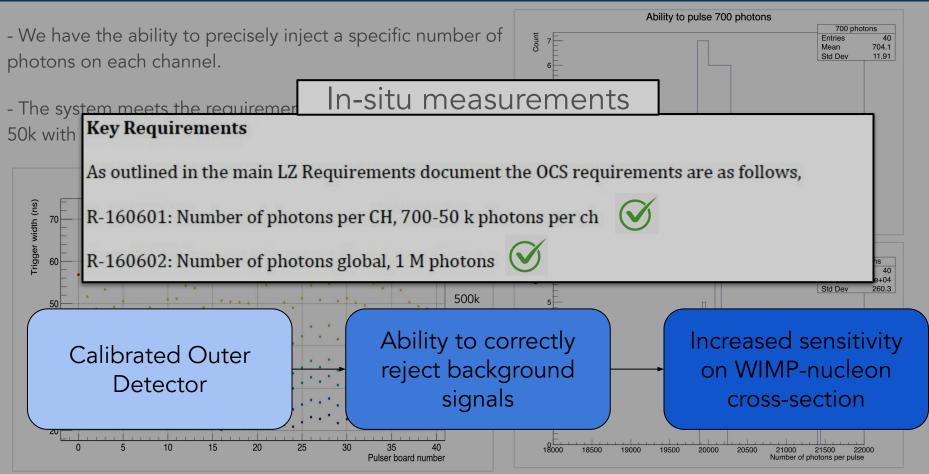

- Over the last year the OCS system has been developed in Liverpool.
- In October, the OCS system was shipped to SURF.
- In November, myself, Will Turner and Alice Baxter travelled over to SURF to install the electronics system and perform re-calibration tests.
- The system arrived safely at SURF and passed an initial arrival visual inspection.
- All 40 channels were tested and calibrated in-situ successfully.

- Light intensity is controlled by the electrical pulse (Trigger width) received by the pulser board.

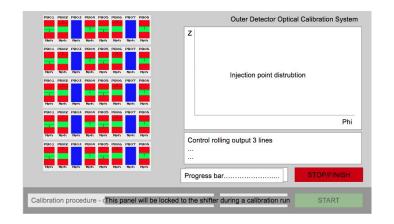

- Data is fitted with a function, the function will be used in the OCS to determine the trigger width needed <u>on each channel</u> in order to inject the specified number of photons.

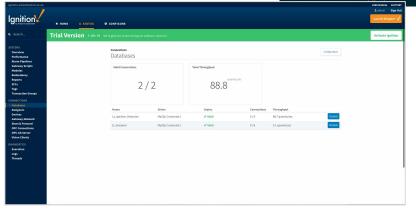

- Specific channel characterisation is essential for the OCS.



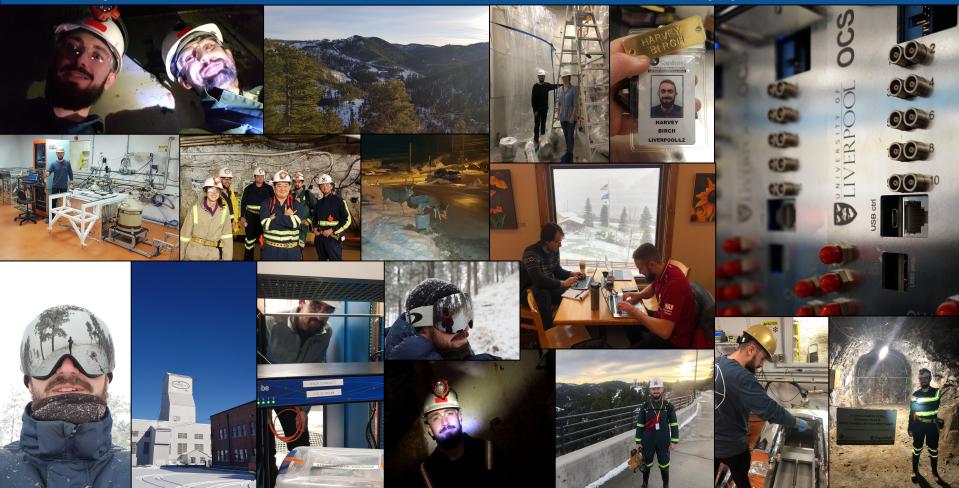

- We have the ability to precisely inject a specific number of photons on each channel.

- The system meets the requirement to pulse from 700 upto 50k with a pulse to pulse variation <10%.




Optical Calibration System Database and GUI

- Created a local SQL database system with tables to store calibration parameters and constants.

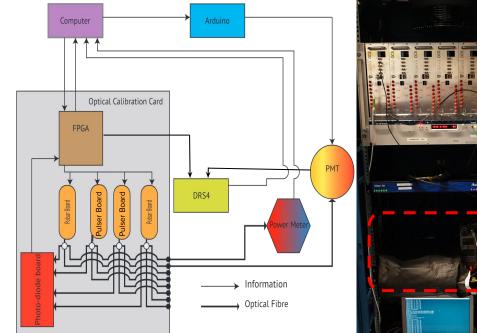

- Linked the local database to the LZ Slow Control server on Ignition.
- Developed the design for the Optical Calibration GUI using Ignition Designer.

	CT * FROM MidthsetvsTrigN;												mysql> SELECT * FROM lnNPHvsTrigW;							
board_td i				i W6p1		I W7p1	i W3p8	NSp1		i wiapa		1 W11p1		l W12p1		I board_id				
							15.333333										15.625944			
							18.416668										18.502056			
							18,410668										18.287556			
							13,291667									1 4	17.987476	0.213284	1 -0.003037	1 0.00051
	9.049435				1 16.375000		19.288332			1 19,758938				2.833333 1		1 5	7.181409	0.880213	1 -0.095796	1 0.00385
													mysal> SI		M Boan	_Identificat	ion: \$42917	1 0.254260	1 0.000000	1 -0.00794
					13.000000				1 16.208332		1 20.291668								-0.060881	
													board	I I EDGA N	un I d	annel Num I			1 -0.001173	
	8.667345		11.166667		1 15.750000				10.458332	1 18.625000	20.791668								0.000000	
							19.968552												-0.076528	
							14.833333													
							17,916668												-0.077501	
																			1 -0.052954	
																		0.773594	-0.081087	1 0.00336
																			1 -0.066099	0.00282
																		0.752758		0.00322
							1 15.333333												1 -0.064025	
							14.833333												1 -0.041695	
							13.041667							10 1					-0.086731	
							15.333333													
																			-0.012080	
																			1 -0.059327	
																			1 -0.073310	
							14.041667												1 -0.081104	1 0.00335
							1 19.288332													
							18.166668											0.760339		1 0.00333
							12,50000											1 0.613096	1 -0.062476	1 0.00283
							22,791668							18 1					1 -0.074605	
														19 1					1 -0.058735	
														20					0.000000	
																			1 -0.044623	
							15.333333												-0.086715	
							1 12.250000												1 -0.078712	
	et (0.00 se																	0.794094	-0.082531	0.00337
and an an		-											1 3					0.594624	1 -0.057627	1 0.00255
													1				998648	0.431583	1 -0.038782	1 0.00205
																			1 -0.068429	
														28 1					1 -0.071464	
																			0.000000	
																			-0.082251 0.000000	
														31						

Any questions? Merry Christmas and a Happy New Year!

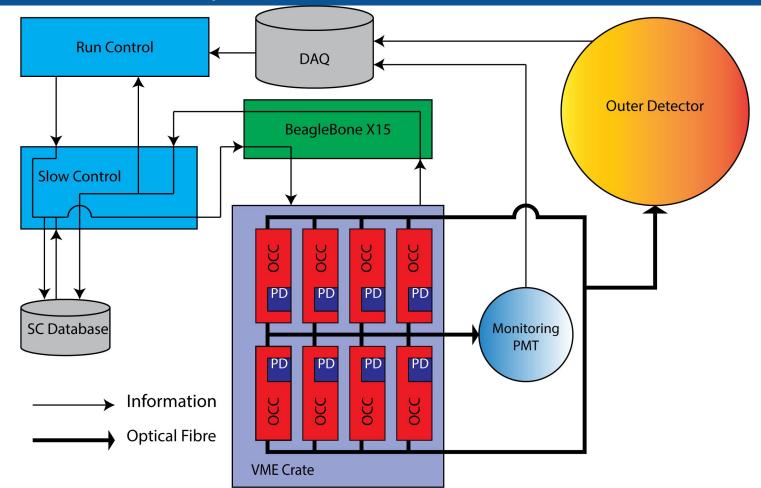
BACK UP

OCS test stand

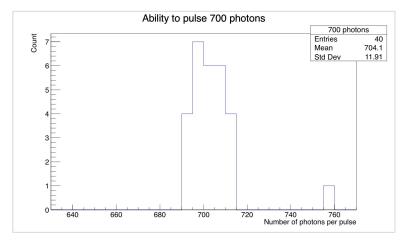

- A script loops over many test points for each channel, constants and configuration settings are sent to the FPGA.

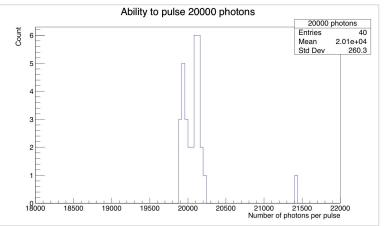
- LED is pulsed on pulser board. Light from the PB is split down three optical fibres using an optical coupler, 1st to the <u>PMT</u>, 2nd to power meter and 3rd to photodiode board.

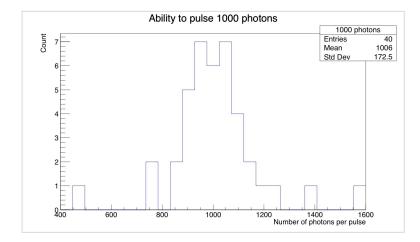
- Data from the <u>power meter</u> and photodiode are all read back within the script.

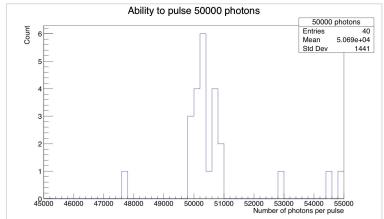

- Waveforms of the electrical trigger and PMT pulses are digitised by a <u>DRS4</u> and saved into output file.

- An arduino is used to control the gain of the PMT based on the read back PMT pulse width.

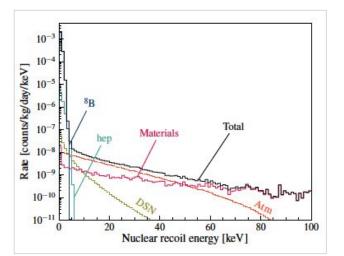

- Test stand highlighted in red beneath a blackout curtain.


Outer Detector Optical Calibration System schematic




13

OCS Calibration: Pulse injection



OD Prominent Backgrounds

Outer Detector Components	Mass / kg	U_{e}^{238}	U_l^{238}	Th_{e}^{232}	Th_{l}^{232}	Co^{60}	K ⁴⁰
			g)				
Outer Detector Tanks	3200	0.16	0.39	0.02	0.06	0.04	5.36
Liquid Scintillator	17600	0.01	0.01	0.01	0.01	0.00	0.00
Outer Detector PMTs	205	570	470	395	388	0.00	534
OD PMT Supports	770	1.20	0.27	0.33	0.49	1.60	0.40
Fibre Support Structures	10.5	31	3.0	6.0	3.0	0.5	330
Optical Fibres (including couplers)	5.53	91.5	8	10.5	4.5	1.75	302.5

- Gammas from surrounding cavern rock and decay chains of detector components.

- Neutrons from detector components and surrounding environment.
- Alphas from detector components.
- OD background detector rate ~100 Hz.

