Searches for Electro-Weak and 3rd Generation Superpartners

Hamish Teagle Supervisors: Prof. Monica D'Onofrio (Dr Federico Meloni-DESY)

Liverpool HEP Christmas Meeting-2019

The Hierarchy Problem:

Why is the higgs mass so small?

Solved Elegantly in SUSY

Dark Matter

SUSY predicts a Massive, Weakly interacting and Stable particle: **Dark Matter Candidate**

What are we looking for?

p

p

<u>3rd Generation</u>

Q | fermion > = | boson > , Q | boson > = | fermion >

We consider that SUSY particles are produced in pairs at the LHC

\widetilde{b} :

Partner of the SM bottom quark

SUSY predicts boson-fermion symmetry:

SM particles have super-partners differing by spin 1/2

Electro-Weak

 $\widetilde{\chi}_{2}^{0}$ **Second-lightest partner of neutral EWK guage** bosons

 $\widetilde{\chi}_{1}^{\pm}$: Lightest partner of charged EWK guage bosons

Mass hierarchy such that particles decay to $\tilde{\chi}_1^0$: **Lightest Supersymmetric Particle** • Partner for the neutral electroweak guage bosons Weakly interacting, stable

 $\widetilde{\chi}_{1}^{0}$: SUSY Dark Matter candidate

What are we looking for?

<u>3rd Generation</u>

Common features:

- Multiple b-quarks

• Missing Transverse Energy carried away by $\tilde{\chi}_1^0$ Higgs decay to b-quarks as a handle in the signal

- 2 Higgs are produced at rest -> Complex b-jet topology

 $m(h_{\text{cand1}}, h_{\text{cand2}})_{\text{avg}}$ [GeV]

DESY. Public Results

No siginificant excess was observed We place limits on signals under two mass constraints

 $m(\widetilde{\chi}_2^0)$ [GeV]

 $m(\tilde{b}_1)$ [GeV]

[GeV

 $m(\widetilde{\chi}_2^0)$

The first SUSY result on full run2 dataset! The analysis has now been accepted by JHEP-<u>arXiv link</u>

 $m(\tilde{b}_1)$ [GeV]

Electro-weak SUSY

 m_T

Analysis is based on 2 key variables:

$$iss(1 - cos[\Delta \phi(\mathbf{p}_{\mathrm{T}}^{\mathrm{l}}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})])$$

Low kinematic endpoints for SM backgrounds but high endpoints for SUSY

 $m_{CT} = \sqrt{2p_T^{b1}p_T^{b2}(1 + \cos\Delta\phi_{bb})}$

We exploit differences in signal and background shape using a statistical fit.

No significant excesses observed:

- Limits are set for $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ up to 750GeV
- The result is public on arXiv (link) and has been submitted to EPJC.

Small (~1 σ) excess observed in all signal regions

Make the most of the run2 datset:

- Investigate the excess seen.
- Complex/More Specific analysis of the full run2 dataset.
- **Target unexplored compressed region.**

$\Delta M(\widetilde{\chi}_{2}^{0}/\widetilde{\chi}_{1}^{\pm},\widetilde{\chi}_{1}^{0}) \sim 125 \text{GeV} \sim$

Analysis strategy:

- Use Gradient-Boosted Decision Trees to exploit kinematic correlations in events.
- BDT discriminates dominant backgrounds vs signal.

This work is under development, aiming to publish results in summer 2020.

- I have qualified as an ATLAS author:
 - Measurements of ITK support structures for ATLAS HL upgrade
- **Results are public for the Run2 dataset EWK and sbottom analyses** \bullet

Continue work on sbottom analysis, now for direct decay

Focus again on compressed scenarios

For the future

Develop EWK analysis for 2nd-wave result

- **Contribute towards uncertainties and truth** studies for Dark Matter-2HDMa-tW analysis

See Matt Sullivan's great poster for the full analysis!

Thanks and Happy Holidays!

What are we looking for?

SUSY Partners

3rd Generation

The Hierarchy Problem

Quantum corrections to the higgs mass

$$\Delta m_h^2 = -\frac{|\lambda_f|^2}{8\pi^2} [\Lambda_{UV}^2 + \dots]$$

SM contribution

$$\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda_{UV}^2 - 2m_S^2 ln(\Lambda_{UV}/m_S) + \dots] \qquad \text{SUSY contril}$$

->Terms from 3rd Gen squarks essential in solving the hierarchy problem

> ->Expect that \tilde{t} and b are relatively light ->High production x-section

Electro-Weak

EWK production has low cross-section compared strong and 3rd Generation

- **Relatively unexplored models only accessible with full run2 data**
- If strong and 3rd Gen are ~TeV, EWK production can be dominant

Why are we interested in these particles?

Searching for Electroweak SUSY: not because it is easy, but because it is hard

By ATLAS Collaboration, 20th May 2019

Strong SUSY limits of the order~TeV

Semi-Compressed signal points: $\Delta M(\tilde{b}, \tilde{\chi}_1^0) \sim 20 - 200 GeV$

SemiCompressed Signal Features:

- Background-like in kinematic variables (m_{Eff} , m_{CT})
- Non-soft b-jets
- Low jet multiplicity

Signal Region outline:

- Gradient Boosted decision trees (XGBoost).
- Multi-classification with "1 vs all strategy," Classes: ttbar, zJets, wJets, signal.
- Target Low m_{CT} region, orthogonal to SRA.

Semi-Compressed signal points: $\Delta M(b, \tilde{\chi}_1^0) \sim 20 - 200 GeV$

- **Pseudo** (
- ->Won't affect SR strategy but may **improve BDT discrimination**

2. Then we bin each m_T region in 3 bins of m_{CT} . This gives a total of 9 orthogonal regions.

	SR-LM	SR-MM	SR-HM	
		= 1		
	>	7(6) for $e(\mu)$		
		= 2 or 3		
		= 2		
		> 240		
		∈ [100, 140]		
7]	_	_	> 120	
cl.)	∈ [100, 160]	∈ [160, 240]	> 240	
xcl.)	$\{\in [180, 230], \in [230, 280], > 280\}$			
c.)	> 100	> 160	> 240	
isc.)		> 180		

d fit.

π_{χ⁰} [GeV]

3

b

How can we improve on the 1st wave compressed?

<u>Pre-selection (Run 2)</u>

- E_T^{miss} triggered: Offline E_T^{miss} >240GeV
- Jet multiplicity requirement: 2 or 3 jets
- B-jet requirement: exactly 2
- Exactly 1 signal lepton (e/mu)

$$m_{\rm CT} = \sqrt{2p_{\rm T}^b}$$

Key Discriminants for <u>compressed</u> signals:

How can we improve on the 1st wave compressed?

Machine Learning using XGBoost

XGBoost='Extreme gradient boosted (decision trees)'

A new split in the tree is calculated by optimising according to the gradient of given loss function (objective function).

Training Samples

Backgrounds:

- Reco-backgrounds
- 70-30 train-test split

<u>Signal:</u>

- Locally produced high-statistics Truth Samples
- Smear Truth events to be reco-like with SimpleAnalysis
- Combine a range of compressed mass signal samples

Wh-1Lbb Compressed

Wh-1Lbb Compressed

Signal Region Definition

	XGB Low	XGB Med	XGB High
E_T^{miss}	>50	>50	>50
$p_T^l[GeV]$	>27	> 27	>27
Njets	2 or 3	2 or 3	2 or 3
Nb-jets	2	2	2
m_{bb}	$\epsilon[95,\!140]$	ϵ [95,140]	ϵ [95,140]
Object-based S	>5	> 8	> 8
XGB Signal Score	$5\epsilon [0.97,1]$	5ϵ [0.97,1]	$5\epsilon_{[0.97,1]}$
m_{CT}	$\epsilon[0,50]$	ϵ [50,150]	>150

Use a combined fit in mCT and XGB signal score.

3 regions in m_{CT} **5 Bin fit in XGB signal score**

	SR-Low	SR-Med	S
MC exp. SM events	89.62	52.19	
MC exp. ttbar events	65.62	41.09	
MC exp. singleTop events	5.90	2.02	
MC exp. Wjets events	12.42	6.10	
MC exp. Zjets events	2.67	0.07	
MC exp. higgs events	1.91	1.31	
MC exp. diBoson events	0.00	0.00	
MC exp. ttV events	0.41	0.81	

Why SUSY?

The Hierarchy Problem

Why is the higgs mass so small?

$$\Delta m_h^2 = -\frac{|\lambda_f|^2}{8\pi^2} [\Lambda_{UV}^2 + \dots]$$

 $\Delta m_H^2 = \frac{\lambda_S}{16\pi^2} [\Lambda_{UV}^2 - 2m_S^2 ln(\Lambda_{UV}/m_S) + \dots] \quad H$

->Divergent terms for fermionic quantum corrections protected from by SUSY

