Real-Time Physics For LHCb Upgrade

Tom Williams Harrison Supervisor: Dr. David Hutchcroft

University of Liverpool

December 19, 2019

Real-Time Physics For LHCb Upgrade

A D > A D >

December 19, 2019 1 / 11

Introduction: VeLo Upgrade

VeloPix

- Moving from Si strip detector to pixel detector
- Sets of mounted chips surrounding beam line
- $(55\,\mu m)^2$ pixels give lower occupancy, improved track reconstruction
- $\bullet\,$ Onboard ASICs can operate at luminosity of $2\times 10^{33}\, cm^{-2} s^{-1}$

- E

VeloPix Tile Testing

Pipeline

TSMC

- Fabrication
- ightarrow Advacam
 - Bump bonding
 - Bow measurements
 - IV scan (0 \rightarrow 300V)

$\rightarrow \mathsf{CERN}$

- Powerup and register tests
- Equalisation analysis
- Source scans (Sr90)
- IV scan (0 \rightarrow 1000V)

Analysed 66 triplet tiles

Real-Time Physics For LHCb Upgrade

December 19, 2019 3 / 11

イロト 不通 と 不良 と 不良 と

Tile QA – Failed Tile Example

Powerup & Register Tests

VeloPix Test Pulse Analysis – Decoder Software

Wrote VeloPix Bypass Decoding Software

- High-rate, many-to-many decoder for binary test pulse format data from gigabit transmitter, written in C
- Converts between multiple formats, and decodes output signal from VeLo
- Can also reorder hits, analyse outgoing data, detect encoding errors or dropped hits
- Includes helper tools that can be pipelined together
- Ibtwiki.cern.ch/bin/view/VELO/VeloOct18Testbeam#C

Software Stack

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

VeloPix Test Pulse Analysis

- Send fixed, known hit pattern into Velo ASICs at regular clock cycle interval
- Receive binary data from output data bypass
- Decode positions and timings and compare input to output

Bandwidth Analysis

- Send simple input pattern to single ASIC
- Increase bandwidth to rated maximum and check for dropped pixels

Figure: Per-ASIC data rate specification for hottest Velopix module (GB/s)

VeloPix Test Pulse Analysis – Results

Bandwidth Analysis

- No dropped pixels until precise rated limit (160M super-pixels/s)
- At burst bandwidths that overflow buffers, pixels dropped from middle outwards

VeloPix Test Pulse Analysis – Results

Real-Time Physics For LHCb Upgrade

December 19, 2019 8 / 11

Trigger Line Retuning

Work on High-Level-Trigger

- NN trained on same variables as existing MVAs gives better results for some metrics
- Published an LHCb internal note on results (cds.cern.ch/record/2671546)
- Discussed with LHCb selections group on methods for tuning inclusive trigger MVAs for LHC Run 3
- Considerations made over GPUs

Spent 6 months on non-physics industrial placement at tech startup Exgence Ltd.

Invitation-To-Tender Service

- Lead development of NLP service for software invitation-to-tender documents
- Automatically extract and sanitise information from abritrarily-structured documents
- Process through training and evaluation over multiple machine-learning models
- Link semantically similar entries to produce automatic suggestions to users on frontend

- Wrote LHCb internal note on trigger optimisation work
- Began work using Run 3 MC for trigger redesign
- Did test pulse analysis on Velo upgrade and wrote decoder software
- Worked 6 months at industrial placement

Backup Slides

イロト イヨト イヨト イヨト ヨー のくで

Tracks to process increase more than computing resources

- Current inclusive trigger line applies fit to all tracks
- Fit takes > 10ms/event (≥ 0.5 ms/track)
- $\bullet~\mbox{Estimated}~13\mbox{ms/event}$ max mean processing time in upgrade
- Selections may need to be applied before track fit

Run 2 Inclusive-b MVA (Multi-Variate Analysis)

- Inclusive b-enriching decision on per track basis (passes based on outcome of tighter cut for single track OR looser cut for two tracks)
- Uses set of cuts on variables and output of a BDT
- Would different MVA model give any improvement?

Methods

- See how a simple neural network compares to existing MVA at identifying b tracks
- Extract event and track information from inclusive-b MC
- Tracks assigned ancestor number based on highest particle type ranking:

Rank $R_{particle}$: $R_{long} > R_b > R_c > R_s > R_{u,d} > R_{ghost}$

- Train on track variables with machine learning library (PyTorch)
- 2 output classes: Whether or not track has b label

Data Used

- 60 000 non-triggered MC-simulated events, generated for inclusive-b interactions, Run2, 2016 conditions
- $\bullet~65\%$ of events or 12% of tracks come from b quark
- MC20161000000Beam6500GeV-2016-MagUp-Nu16-25ns-Pythia8Sim09bXDIGI.py MC20161000000Beam6500GeV-2016-MagDown-Nu16-25ns-Pythia8Sim09bXDIGI.py

Hyperparameter Search

- $\bullet\,$ Limit of performance at around 2 layers 10-20 neurons wide
- ReLU activation often means dead neurons LeakyReLU fixes this
- Learning rate & batch size have little effect on classifier performance

Tom W Harrison (University of Liverpool)

Real-Time Physics For LHCb Upgrade

Track Classifier Variables

Classifier Performance Comparison

Comparison of neural network model with existing lines in high rejection region (soft track filter)

Neural net and MVAs with and without soft-track filter ($p_T > 570$ MeV, p > 4750 MeV)

17/11

December 19, 2019

Two-Stage Classifier

Two-Stage Classifier

Tom W Harrison (University of Liverpool)

December 19, 2019 19/11

Two-Stage Classifier

Tom W Harrison (University of Liverpool)

December 19, 2019 19/11

Classifying Whole Events

Pooling Outputs

- Classify each track separately with feed-forward NN
- Put outputs through pooling functions to 2^{nd} NN
- Slightly better than cutting on highest output value

4 A 1

UNIVERSITY OF

Current HIT1MVA Lines

HLT1TrackMVA

SELECTION('%(input)s') >> (TRCHI2DOF < %(TrChi2)s) >> (TRGHOSTPROB < %(TrGP)s) >> (((PT > %(MaxPT)s) & (BPVIPCHI2() > %(MinIPChi2)s)) | (in-range(%(MinPT)s, PT, %(MaxPT)s) & (log(BPVIPCHI2()) > (%(Param1)s / ((PT / GeV - %(Param2)s) ** 2) + (%(Param3)s / %(MaxPT)s) * (%(MaxPT)s - PT) + math.log(%(MinIPChi2)s)))))

December 19, 2019