Modelling Reactor Antineutrino Emissions for Nuclear Safeguards

George Holt

Supervisors: Jon Coleman, Carl Metelko, Robert Mills (NNL)

g.a.holt@liv.ac.uk

Nuclear Safeguards Monitoring

- Safeguards: measures to verify compliance with the Non-Proliferation Treaty
- Monitoring: verifies operator declarations of nuclear material
- Difficult to monitor fuel during irradiation in reactors

NIVERSITY

0 F

- Fuel can spend ~2-10 years in reactor
- Fuel accounting before and after irradiation

Anti-neutrino Reactor Monitoring

- Large production in fission reactors
 - Beta-decaying neutron-rich fission products
 - ~10²⁰/s/GW_{TH}
- Very low interaction rate with matter
 - Can't be shielded
 - Difficult to detect
- Real-time reactor information
 - Approximate power
 - Fissile isotope composition
- IAEA key detector suggestions:
 - Tonne scale
 - Portable

Per-fission anti-neutrino spectrum variation between fissile nuclides

19-20/12/2019: HEP Christmas Meeting

Anti-neutrino Detection

- Inverse beta decay (IBD)
 - $\overline{\nu}_e + p \rightarrow n + e^+$
 - 1.806 MeV threshold
 - Reactor anti-neutrino energy: 0-15 MeV
 - Cross-section σ rises with \overline{v}_e energy \rightarrow
 - "Double coincidence" reduces background

The VIDARR Detector Prototype

- Detector details:
 - Transportable by lorry
 - 70 layers of instrumented plastic scintillator bars
 - ~1 tonne active mass
 - Gadolinium-doped sheets for neutron capture
- Prototype demonstrated at Wylfa nuclear power station 2014-2015
 - 60 m baseline
 - Increase of 30 events/day when reactor in operation

Modelling the Wylfa 1 Reactor

- Need to know anti-neutrino flux at detector
- Flux calculator program developed
 - Fuel model combined with geometric model
 - Could be adapted for other experiments eg. WATCHMAN/AIT
 - Beyond scope of PhD
- Data available from operator
 - Daily total power history
 - Monthly fuel status data for full reactor

-20/12/2019: HEP Christmas Meeting

• Geometric model positions fuel elements w.r.t. detector

Visualisation of fuel element arrangement in a Magnox core

Reactor Anti-Neutrino Emissions

Currently three approaches

- Convert experimental beta spectrum measurements
 - Spectra measured from irradiated fissile isotopes
 - Converted into anti-neutrino spectra by dividing into "virtual beta branches"
- Calculate from nuclear data ("Summation")
 - [fission yield] × [per-isotope anti-neutrino spectra]
 - ~10% of spectrum has unknown decay data
- Both assume decay rate = production rate
- MC reactor models
 - Use available reactor modelling software
 - Data from nuclear databases
 - Includes time-dependent effects

Reactor Anti-Neutrino Emissions

- Fuel modelled using standard UK reactor software
- Supporting work on equilibrium "summation" calculations
 - Calculating beta and anti-neutrino spectra using different nuclear databases
 - JEFF-3.1.1, JEFF-3.3, ENDF-VIII.0
 - Compared with experimental data
 - Compared with current standard
 - Model unknown spectra with substitute shape data
 - Gives insight into model-based uncertainties on flux calculation

Wylfa Fuel Model

- Anti-neutrino emission calculation by NNL
- Uses standard UK nuclear software
 - FISPIN (fuel irradiation)
 - JEFF-3.1.1 (fission & beta decay data)
 - BTSPEC (calculates beta [anti-neutrino] spectra)
- Combines FISPIN fuel simulation with perisotope anti-neutrino spectra
- Time dependent effects included
- Anti-neutrino emission lookup table over fuel status
- Flux at detector calculated per-element and integrated over all elements

Flux Calculator Output

- Flux calculated across face of detector
- Binned by anti-neutrino energy and direction
- 18 monthly "snapshots" generated
 - July 2014 December 2015
- Predicted IBD consistent with data within uncertainties

Anti-neutrino Spectrum Evolution

- Varies between months
 - Evolves with fuel

NIVF

- Plutonium grows with irradiation
- Plutonium produces fewer $\overline{\nu}_e$ per fission than Uranium
- Flux evolution over time ongoing work
- Aim to link fuel evolution with flux evolution
 - Goal: fuel inventory from anti-neutrino measurement

19-20/12/2019: HEP Christmas Meeting

Antineutrino flux at the Wylfa Detector predicted for two different months

Summary

- Comprehensive model of Wylfa reactor 1 developed
 - Predicted IBD rate consistent with data within uncertainty
 - Adaptable to WATCHMAN/AIT
- Model output and supporting data to be analyzed
 - Uncertainties on flux calculation
 - Evolution of anti-neutrino spectrum with fuel
 - Key nuclides missing beta decay data

