

Ron Collins supervisors: Jon Coleman, Carl Metelko

16/12/2019

Measuring $\overline{v_e}$ from Reactors

- Done initially with Cowan and Reines 1956-1957
 - Discovery of $\overline{\nu_e}$
- For non-proliferation purposes suggested in 1978
 - Little interest Geopolitics
 - 2007 SONGS1 deployed
 - Proof of concept

16/12/2019

IAEA "Desirements" for $\overline{v_e}$ non-proliferation

- Technology of interest to International Atomic Energy Authority (IAEA)
- Resulted in IAEA workshop and report: "Final Report: Focused Workshop on Antineutrino Detection for Safeguards Applications", IAEA (2008)
- "Desirement" Not quite a requirement but a desired positive trait

VIDARR Meeting Those "Desirements"

- Verification Instrument for the Direct Assay of Reactors at Range (VIDARR)
- Can work ~ 60m from reactor, outside major security zone
- ~2 ton of plastic scintillator with 2660 segmented channels
- Revision of the T2K ND280 ECal technology
- Detects emitted $\overline{v_e}$ from fission fragments

Neutrino Production at Reactors

• Fission reactors:

- Fission of U and Pu isotopes
- Produce differing β decay chains
- Thus producing unique $\overline{v_e}$ flux and spectrum

Original Detector

- From T2K:
 - Scintillating bars with TiO2 coating
 - Wavelength shifting fibres
 - Multi-Pixel Photon Counters MPPCs
- Modifications:
 - Gd sheets in between layers for neutron capture
 - Electronics changed for analysing IBD

Ron Collins Winter Presentation

- Shipping container
 - Only needed a plug socket

VIDARR Upgrade

- ~50 % mass increase
 - 1.52m by 1.52m by 0.7m
- New readout electronics
 - New MPPCs
 - New readout boards
 - New electronics Rack
- Improved temperature stability :
 - Two large radiators
 - Air-conditioned new container

Inverse β -decay in VIDARR

- Inverse Beta: $p + \overline{v_e} \rightarrow n + e^+$
- Positrons hit a few bars in close proximity
- Neutron absorbed ~ 10 μs later by Gadolinium sheets
 - Mylar sheets doped with Gd
 - Produces an 8 MeV γ cascade
 - Releases in multiple directions
 - Hits many bars

Neutron event

16/12/2019

Monte Carlo Simulation

• IBD event -

- Prompt shown in red
- Delayed shown in blue
- Simulated improvements:
 - New channels
 - Better electronics
- Using Geant4 + data driven
 effects such as:

16/12/2019

MPPC Dark Noise for Simulation

• Data driven dark noise model – data taken by G.Holt

- Cross talk and after pulsing modelled
- Exponential tail
 - Statistics low past
 ~ 14 mV
 - Therefore modelled as exponential
 - Avoids singular peaks in raw data

Quenching for Simulation

- Scintillator saturation by highly ionising particles
- Determined by Birk's law: $\frac{dL}{dx} = S$ - $\overline{1+k_B \frac{dE}{dx}}$ • Particle dependant

11

Attenuation for Simulation

- Attenuation (data driven)
- Light travels through bars + fibres
 - Attenuation length 580 mm + 60 mm

 Data measured by George Holt from our light box

Replacing Simulated Gd Model

- Using a more accurate model than those found in G4
- Watchman result overlaid
 - Based on Danse calorimeter data
 - Cascade difficult to model or measure
 - Energy is conserved
 - ¹⁵⁷Gd peak ~ 8MeV γ

Ron Collins Winter Presentation

Individual γs

*Y.Chen, 2015 AARM

16/12/2019

VIDARR's Neutron Trigger

- Machine learning helps design trigger
- "Efficiency*" = 76%, "Purity*" = 92%

*worst case scenario – normalisation pending, energy spread: 0-10 MeV, should be better with more accurate data

Wylfa Reactor - Cosmic muon analysis

- Deployment at Wylfa in 2014
- A Cosmic from the Wylfa data Set-
- Revisiting background muon rates
- Measuring reactor building shadow
 - How many cosmic muons blocked?
- 3D track fitter
 - Using Minuit2 + MIGRAD
- Pioneering calibration techniques for upgraded VIDARR

Plan Going Forward

- Verify data techniques
- Analyse initial results of the VIDARR detector
- Set up/build VIDARR
- Background measurements of Hartlepool reactor
 - As part of LIV.DAT 6 month placement
- Merry Christmas!

Any Questions

What is the ML that informs our trigger?

- Support Vector Machine (SVM)
- Best separating hyperplane

16/12/2019

Where was our detector?

- Side a = x
- Side b = y

Ron Collins Winter Presentation

16/12/2019

Summed Energy Dicebox

Dicebox Breakdown

- Most of the cascade is $\boldsymbol{\gamma}$
- Very few e⁻s
 - Shell type has minimal impact on their energies

Dicebox Multiplicities

- Electrons make up small number of particles
- Mostly the cascade is gammas
- 1e6 simulated

Summed Energy vs Individual Energy

Kon Collins – VIDAKK update