ZZCCUV BACKGROUND ESTIMATION WITH ZZ \rightarrow 42 FOR HIGGS INVISIBLE SEARCHES

Eloisa Arena Supervisors: Andrew Mehta, Monica D'Onofrio DESY supervisor: Sarah Heim

HIGGS TO INVISIBLE

- SM Higgs to invisible decay (theoretical prediction BR_{H→inv}=1.06 x 10⁻³ for m_H=125 GeV);
- So far, this measurement has been made by ATLAS with VBF (Vector Boson Fusion) and VH(associated production with a Z/W boson) production modes;
- ➤ The Higgs-portal model predicts a larger BR_{H→inv}
- The Higgs could decay into two Dark Matter (DM) particles if:

mи

 $\bar{\chi}$

2

$$m_{DM} < \frac{m_{M}}{2}$$
SM decay
$$I = \frac{1}{H}$$

$$I = \frac{1}{H}$$

$$I = \frac{1}{H}$$

$$I = \frac{1}{H}$$

ANALYSIS STRATEGY AND SM BACKGROUNDS

- We decided to concentrate on ZH production, with the Z decaying into two leptons;
- The signal is represented by two isolated leptons from a Z boson decay and large missing transverse momentum due to an invisible Higgs boson decay or a WIMP pair ($\ell\ell + E_T^{miss}$), with $\ell = e, \mu$

	ee	$\mu\mu$
Signal		
ZH with $BR(H \rightarrow inv.) = 20\%$	122	129
Backgrounds		
ZZ	915.8	952.7
WZ	313.2	334
Z+jets	133	133
non-resonant- $\ell\ell$	96.9	99.2
$t\bar{t}V/VVV$	3.6	3.6
Total background	1462.5	1522.5

μμ plot very similar.

ANALYSIS STRATEGY AND SM BACKGROUNDS

- We decided to concentrate on ZH production, with the Z decaying into two leptons;
- The signal is represented by two isolated leptons from a Z boson decay and large missing transverse momentum due to an invisible Higgs boson decay or a WIMP pair ($\ell\ell + E_T^{miss}$), with $\ell = e, \mu$

	ee	$\mu\mu$
Signal		
ZH with $BR(H \rightarrow inv.) = 20\%$	122	129
Backgrounds		
ZZ	915.8	952.7
WZ	313.2	334
Z+jets	133	133
non-resonant- $\ell\ell$	96.9	99.2
$t\bar{t}V/VVV$	3.6	3.6
Total background	1462.5	1522.5

μμ plot very similar.

Eloisa Arena

ZZ(*ll*)+MET BACKGROUND

- The SM ZZ production is the dominant background in Z(ll) + MET analysis;
- Currently this type of background is estimated from MC with ~10% uncertainty;
- The idea is to use semi data-driven methods in order to reduce the uncertainty.

 $ZZ \rightarrow 4\ell CR$

ZZ production

HEP Christmas Meeting

ESTIMATE USING ZZ \rightarrow 4\ell

➤ The ZZ→4ℓ Data/MC ratio can be used to rescale the Monte Carlo normalisation of this channel with the factor R:

$$R = \frac{N_{4\ell}^{Data} - N_{non\,ZZ}^{MC}}{N_{4\ell}^{MC}}$$

where $N_{non ZZ}^{MC}$ are the background events for the $ZZ \rightarrow 4\ell$ channel.

► Rescale the $ZZ \rightarrow \ell \ell vv$ Monte Carlo samples:

$$N_{\ell\ell\nu\nu}^{'MC} = N_{\ell\ell\nu\nu}^{MC} \cdot R = N_{\ell\ell\nu\nu}^{MC} \cdot \frac{N_{4\ell}^{Data}}{N_{4\ell}^{MC}}$$

This method takes only the normalisation from data, instead of the shape.

ZZ ESTIMATE USING 4^C REGION

All backgrounds evaluated for 4ℓ , finalising estimates for $ZZ \rightarrow \ell\ell\nu\nu$.

$$R = \frac{N_{4\ell}^{Data} - N_{non\,ZZ}^{MC}}{N^{MC}} = 0.89 \pm 0.06$$

No systematic uncertainties estimated yet (work in progress). Eloisa Arena 6

Data Full Run II	MC Total
219	244.46

HEP Christmas Meeting

CONCLUSION

This year:

- ► I have studied a method to estimate the $ZZ \rightarrow \ell \ell \nu \nu$ background using the $ZZ \rightarrow 4\ell$ channel;
- Moved to DESY in September, I will be there for two years;
- Started my Qualification Task to became ATLAS author on electron ID;
 - Building probability density functions and re-tune the likelihood used for the electron ID;

Improve the code for Run III.

Thank you for the attention

Merry Christmas!

Eloisa Arena

HEP Christmas Meeting