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Measurements using Atom Interferometry

« Local Gravity

* Fine Structure Constant

* Lorentz Invariance Violation
« Dark Matter

« Gravitational Waves
 Quantum Foam
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Atom Interferometry Overview
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State Population
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Current Measurement

Current results for Liverpool

Interferometer

Raman beam improvements

reduce noise

Increase the Rabi frequency
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Rabi Oscillations with increasing detuning form atomic resonance
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General Improvements

* More ports allow for more
camera angles and use of
dipole trap

 Fibre AOMs and switches
allow for reduction in leaked
light State selectio

tecti h
- Larger, flatter Raman petection cha
windows reduce wavefront _
distorti Cooling lase
Istortion collimators

* New detection system
 Cold atom source for faster

Ioading times Main chamber
* Vibration Isolation 3D MOT
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Launching Atoms
Output Population Ratio

1
P = 7 (1 — cos(Agp))
A = kgT?

« Sensitivity of atom
Interferometry depends on
T

« Can effectively double the
Interferometry Region by
launching

 |Leads to factor 4 increase
In phase shift
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Limitations in Power

« Upgrade includes larger windows for larger trapping beams
« Larger beams increase atom number
* Must increase power to compensate for larger beam diameter

X-Axis Projection

Current MOT Diameter = ~1 mm
Current Beam Size = 12 mm
Current Atom number ~4 x 107

it Y-Axis Projection

00000

New MOT Beam Diameter = 25 mm
Possible Upgrade MOT Size = > 2 mm
Upgraded Atom Number > 3 x 108
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Increasing Power

 New laser has been
purchased to
Increase power

e Consists of 1560 nm
seed laser and 30 W
fibre amplifier

* Rubidium requires

780 nm light
@ 30 W @ 1560 nm
1560nm 780nm
—
@ 7TW @ 780 nm
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Second Harmonic Generation (Frequency
Doubling)

« Lithium Niobate crystal used change the wavelength of light (PPLN)

« Two 1560 nm photons interact with the PPLN to create one 780 nm
photon

 OQutputis upto 7 W of 780 nm, 2.5 times the current power

2
0, Non-linear %
optical medium
w

* Residual 1560 nm light may be used in future dipole trap
« Dipole trap means colder atoms
« Colder atoms means a larger signal
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Raman System

Raman Power Increase

» Power limited by
damage threshold of
st Combined Raman Beams ultra-fast AOM

To the Experiment
..... :-:: W

« Amplification with

™) Tapered Amplifier occurs
i after the frequency
| manipulation
Seed
+*
+*

« Means higher Raman
. beam power

* Allow for more
momentum to be
imparted on atoms

Amplified Raman 1 Light | %

+1.5 GHz and -1.5 GHz
Brimrose AOM in double pass configuration
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The main chamber is being made here at Liverpool Physics

Workshop! Many thanks to them for everything they do for us.
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Summary

« Upgrade is now underway

* New high power laser system has been designed
« Atom launch designed

« All upgrade components have been ordered
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Back Ups

X-Axis Projection
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Large Momentum Transfer

U N

Large Momentum Transfer (LMT) increases sensitivity
Implementing LMT requires Raman beam detuning (A)
Detuning reduces single photon interaction — causes decoherence
Also decreases Raman transition

1 1

Single Photon Interaction « Az Raman Transition A

Can suppress single photon interaction and maintain Raman transition
by increasing Raman beam power

I 1
QRaman X ﬁ
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Atom Launching

%4 UNIVERSITY OF

& LIVERPOOL

16



Polarisation Gradient Cooling

 PGC is used to cool below Doppler O4
jimit Y SUSN +77/

« Two counter-propagating, circular W

polarised beams form standing
wave

- Atoms moving in standing wave = fecceeeeeeeceeeeee - ‘E’.‘Elt.ef‘.f?.f?_--_
'y
T
T
I

lose kinetic energy as they move
toward potential maximum
* Optical pumping moves atoms to

812
lower energy state, removing |
potential energy [5]
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Coil Heating

0.2

Surface: Temperature ()

0.4

0.6

0.8

L& 4
-y
(/

1.5 ~
I | o
0

Simulation of Joule heating in the coil without cooling

At equilibrium

Max temperature is 660K
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Field Lines
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~« Anti-Helmholtz

configuration
Magnetic minimum in
the centre
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Magnetic flux density norm (T)
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Less sloping at the magnetic minimum

Larger field gradient
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Two-Level Atom

« Atoms have two states, ground state |g) and excited state |e)

« Atoms are prepared in a specific state

« They are split by introducing an electric field i.e. a laser pulse
« Depending on the properties of this field, the energy states of the atoms

change

« Probability of states depends on pulse duration and Rabi frequency

« ATI/2 pulse corresponds to a 50% probability the atom will be in a different

State
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Quantum Decoherance

* Quantum foam permeates space-time

« Small chance it can interact with coherent matter

 Interactions would cause a transfer of momentum that would cause
decoherence in spatially superimposed massive objects

« Massive objects prepared in a superposition of different positions would
entangle with degrees of freedom of foam [4]

* In interferometer, atoms are coherently separated into superposition of states
* Quantum foam potentially scatters off cold atoms in interferometer

* There is momentum exchange between atoms and foam.

« Transfer will cause the decoherence of the atoms in the cloud
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Assembled Interferometer

Set up as if launching
Interferometry region
Detection and state selection
Coils

Chamber

Another detection cross
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