SEARCH FOR DARK PHOTONS IN HIGGS DECAYS AT THE ATLAS EXPERIMENT

Alessandro Biondini

Supervised by: Monica D'Onofrio, Yanyan Gao (now Edinburgh)

In DESY supervised by: Federico Meloni

Dark photons in Higgs decays

- Dark sector weakly coupled to the SM might exists and manifest through new particles as "dark photons" (γ_D);
- $\gamma_{\rm D}$ mixes kinetically to SM particles with one parameter ϵ ;
- γ_D might have masses MeV-GeV range and mix kinetically to SM particles through the ϵ parameter (coupling):
 - small $\varepsilon \rightarrow$ Long Lived γ_{D} .
- Production: directly from Drell-Yan (e.g. @ LHCb) or from Higgs decays (@ATLAS and CMS):
 - signature: highly collimated decay products (Lepton-Jets) from Higgs;
 - rate depends on the BR (H $\rightarrow \gamma_D \gamma_D$), could be up to 25% (current BR of Higgs invisible decay).

Liverpool HEP Christmas Meeting

Displaced lepton jets analysis: WH channel

- My work: extend the coverage using associate production V(=W,Z) + Higgs;
- WH is 2.5% of Higgs production:
 - also requiring W $\rightarrow lv$ (Branching Fraction ~10% for each flavour);
 - single lepton triggers (μ/e) high efficiency;
- Past months activities:
 - major work on the reconstruction software to optimise it for the signature of interest;
 - studies on the WH event selection and optimisation (in progress);
 - studies of major background using MC simulation:
 - top-pair production and W+jets.

https://arxiv.org/abs/1909.01246

Alessandro Biondini

3

Displaced lepton jets analysis: WH channel

Δφ (LJ-LJ)

- Basic selections applied:
 - Leading lepton (e or μ) pT > 27 GeV;
 - Missing $E_T > 50$ GeV;
 - Transverse mass (mT) > 30 GeV;
 - Number of jets (with Pt over 30 GeV) < 3;
 - two or more Lepton-Jets.
- Top-pair and W+jets events reduced but still dominant over signal;
- Several kinematic variables being considered for further optimisation.
- MIN [Δφ (MET-Jet)]: minimum of the angular distances between the Missing E_T and a Jet in the event;
 - $\Delta \phi$ (LJ-LJ): angular distance between two LJ.

WH, $H \rightarrow \gamma_D \gamma_D + X$	N events in 139 fb-1		
ttbar	14862		
W+jets	5078		
WH signal	174		

Alessandro Biondini

4

Conclusions and next steps

This Year (not only working on the analysis):

- moved to DESY in September for the next 2 years;
- outreach activities for high school students;
- started my qualification task to became an ATLAS author:
 - ITk strip detector for HL-LHC ATLAS upgrade;
 - reconstruction and analysis of test-beam data from ITk barrel and endcap modules;
- attended important international conferences:
 - ATLAS EXOTICS Workshop;
 - LHC Long Lived Particle Community Workshop.

Plans:

- aim to have first results at the end of 2020;
- full publication by the end of 2021.

5

THANK YOU FOR YOUR ATTENTION

Alessandro Biondini

Alessandro Biondini

Displaced lepton jets in the ATLAS detector

- Muonic Lepton Jets: collimated muon bundle in the MS with no tracks in the ID.
- Hadronic Lepton Jets: Low EECAL/EHCAL jets with no tracks in the ID.

Three possible combinations (for $H \rightarrow 2\gamma_D$):

- μ<mark>LJ-μLJ;</mark>
- μLJ-hLJ;
- hLJ-hLJ

The ATLAS detector

44m

Displaced Lepton-Jets analysis: status and plans for full Run-II analysis

Results for 2015-2016 dataset (36 fb⁻¹) provide exclusion only for ggF Higgs production and muonic LJs.

Overcome early Run-II limitations: ggF (used for early Run-II results) accounts for 88% of Higgs production, but dedicated triggers (low efficiency) → WH is 2.5% of Higgs production, **but single lepton triggers (high efficiency)**;

Full Run-II:

- 2015-2018 dataset: *L* = 139 fb⁻¹;
- extend search down to 2m_e and up to 15 GeV;
- ggF+VH (+VBF later) channels combination;
- set limit also for the hadronic channel;
- <u>CNN</u> (trained using 3D jet-images) for LJ clustering.

Signal and background studies: samples used

WH signal:

DSID: 312539, mH=125 GeV, m_{γD} = 400 MeV, cτ = 50 mm, mfd2= 5 GeV, mHLSP = 2 GeV;

W+Jets BKG (W \rightarrow µv):

DSID:3641[56-69]; Sherpa_221_NNPDF30NNLO_Wmunu; MAXHTPTV500-1000;

ttbar samples:

DSID:410472, ttbar_dilep;

Data18 samples:

~ 1.8 M events;

WH selection: WIP

- Primary vertex in the event (hasPV == 1);
- Single lepton trigger (as of now: OR between): -HLT_e24_lhmedium_L1EM20VH -HLT_mu20_iloose_L1MU15, -HLT_e26_lhtight_nod0_ivarloose, -HLT_mu26_ivarmedium;
- Number of SignalLeptons == 1;
- Number of Jets (with $Pt \ge 30 \text{GeV}$) <= 3;
- W transverse mass mT > 30 GeV;
- MET > 50 GeV.

 $BR(H \rightarrow 2\gamma_D) = 100\%$

20% signal efficiency!

WH signal sample

ET > 50 GeV.	Events after each cut: WH signal	Raw Events	Efficiency (RAW events)	Events (139 fb ⁻¹)	Efficiency (weighted events)	
	Events	89998	-	22488	-	
	Primary Vertex	89998	100%	22488	100%	
	Trigger	34001	37.8%	8450	37.6%	
	NJets (Pt>30GeV) <= 3	32018	35.6%	7946	35.3%	
	N_SignLept==1	27083	30.0%	6731	29.9%	
	Mt CUT	25039	27.8%	6224	27.7%	
	MET CUT	17161	19.1%	4276	19.0%	
Alessandro Biondini 12			Liverpool HEP Christmas Meeting			

Dark photons in Higgs decays

- Hidden sector weakly coupled with SM;
- no direct coupling to SM new U(1) gauge invariance;
- γ_D mixes kinetically to SM particles with one parameter ϵ ;
- $m_{\gamma D}$ ranges from MeV to GeV scale;
- small $\varepsilon \rightarrow$ Long Lived γ_D ;
- highly collimated decay products ($m_{\gamma D} << mH$) \rightarrow Lepton-Jets.
- Benchmark model: FRVZ model: <u>arXiv:1002.2952</u>;
- γ_D from Higgs decay;
- Higgs production:
 - gluon gluon Fusion (ggF): already used;
 - Higgs associate production (VH): NEW channel
 - Vector Boson Fusion (VBF) : NEW channel

Branching fraction H→inv upper limit is 25%, plenty of space for exotics Higgs decays involving dark photons.

