

HV-CMOS Applications and R&D

<u>E. Vilella</u>, G. Casse, M. Franks, J. Gooding, J. Hammerich, S. Powell, J. Vossebeld, S. Wonsak, C. Zhang

University of Liverpool

vilella@hep.ph.liv.ac.uk

HV-CMOS sensors

- Main features

Applications

- Mu3e
- ATLAS
- LHCb
- pEDM
- CERN-RD50

R&D

- Radiation tolerance
- Leakage current
- Pixel size
- Response rate
- Take-home messages

UNIVERSITY OF LIVERPOOL

HV-CMOS – Monolithic pixel detectors

W

- Sensor and readout electronics on single wafer
- In conventional High Voltage-CMOS (HV-CMOS) processes
 - No bump bonding is required
 - \circ Reduced material thickness (50 μ m)
 - \circ Small pixel size (50 μ m x 50 μ m)
 - Faster production
 - Higher yields
 - More cost effective (~£100k/m²)
 - Large bias voltage (V_{bias} ~100 V)
 - Fast charge collection by drift (~200 ps charge collection and ~6 ns time resolution with timewalk correction)
 - \circ Good radiation tolerance (~10¹⁵ 1 MeV n_{eq}/cm²)
 - High resistivity wafers (10 Ω·cm < ρ < 2-3 kΩ·cm)
 - In-pixel amplification
 - High-volume production

$$\Rightarrow W = \sqrt{\rho \cdot V_{bias}}$$
Next generation of detector
technology for physics
experiments

Applications

- First HV-CMOS application in an experiment (2021+)
- Requirements:
 - Low material 50 μm
 - Good time resolution< 20 ns (for pixels)
 - Fine segmentation
 80 μm x 80 μm

LIVERSITY OF

LHCb Upgrade Ib and II – Mighty Tracker

Technical note that describes initial studies for the LHCb Upgrade Ib and II

- Downstream tracker (after the magnet)
 - Inner tracker
 Installed in LS3 (2024)
 On constitution in the second of the
 - Operation in Upgrade Ib
 Middle tracker Installed in LS4 (2030)
 - (Mighty Tracker) Operation in Upgrade II
- Key challenges
 - Radiation tolerance
 - \circ 6 x 10¹⁴ 1 MeV n_{eq}/cm² & 40 Mrad
 - Current SciFi tracker not able to cope
 - Large area
 - 3 stations with 4 layers each and 30 m² per layer in Upgrade I
- HV-CMOS detectors being proposed for the Mighty Tracker
 - Test chip in 2020 (MuPix/ATLASPix type chip)
 - With very small design effort from UoL

UNIVERSITY OF LIVERPOOL

proton Electric Dipole Moment – pEDM

EDM = Distribution of + and – charge in a particle

- − EDM \cong 0 \rightarrow Standard Model
- EDM > 0 \rightarrow New Physics

Proton EDM measurement

- Unprecedented precision of $10^{-29} e \cdot cm$
- Experiment = Only possible using <u>polarized</u> protons at the so-called *magic* momentum of 0.7 GeV/c in an <u>all electric storage-ring</u>
- Detector = Polarimeter measures particle rate as a function of the angle with the beam

Current detector technology = LYSO crystals

- Poor detection efficiency (70%)
- Poor radiation tolerance
- Very expensive

New detector technology = Time-of-Flight based

- Combination of <u>HV-CMOS sensors</u> (spatial resolution) with fast LGADs (time resolution)
- > 90% detection efficiency (simulated)

Y. Semertzidis, 2016

Geant4 simulation

J. Gooding, 2019

The depleted CMOS project for the ATLAS ITk Upgrade was cancelled in 2019, but this is not a problem for us as our funding is for doing generic R&D.

The interest in HV-CMOS detectors by planned and possible future experiments in physics is continuously growing.

We are part of the proposers for several of these experiments.

HV-CMOS – First full reticle detectors

<u>ATLASPix3 – Some chip details</u>

- Matrix with 132 columns x 372 rows
- 150 μm x 50 μm pixel size
- Trigger latency $\leq 25 \ \mu s$
- Radiation hard design
- Serial powering (only one power supply needed)
- Data interface is very similar to ATLAS RD53 readout chip
- Power consumption is ~200 mW/cm² (with 25 ns time resolution)
- Very initial measured results available (fabricated in 2019)

ATLASPix3 is the first full reticle pixel detector (2 cm x 2 cm) <u>compatible</u> with ATLAS ITk L4 requirements

HV-CMOS sensors are making their way to final prototypes before entering production.

Radiation tolerance

- From TCAD simulations, we know
 - Thin and high resistivity HV-CMOS sensors with backside biasing behave better
 - $\circ~$ Stronger electric field lines
 - Shorter charge collection times
 - Better radiation tolerance
- CMOS foundries tend to fabricate thick chips in low resistivity wafers, with topside biasing
- We have done post-processing of some of our HV-CMOS prototypes in a 1 kΩ·cm bulk
 - Thinned to 100 um
 - Added backside contacts for applying large bias voltages from the back
- Performance evaluation of HV-CMOS sensors
 - Before/after irradiation with n-fluences ≤ 2 x
 10¹⁶ 1 MeV n_{eq}/cm²
 - − Test #1 \rightarrow e-Transient Current Technique
 - − Test #2 → Charge Collection Efficiency

Radiation tolerance – eTCT

Test #1 → e-Transient Current Technique (eTCT)

- Measure the width of the depletion region
- 3 x 3 matrix of passive pixels (H35DEMO)
- Before irradiation \rightarrow Sensor fully depleted at approx. 20 V of bias voltage
- After irradiation \rightarrow Sensor *alive* at 2 x 10¹⁶ 1 MeV n_{ea}/cm² n-fluences
- Publication in preparation

M. Franks, 2019

Radiation tolerance – CCE

- Test #2 → Charge Collection Efficiency (CCE)
 - 16 x 1 active pixels (H35DEMO)
 - Radioactive source
 - We have encountered some difficulties
 - Charge sharing
 - No conclusive results so far
 - We will repeat the measurements using another matrix of the same chip
 - \circ Different features \rightarrow less charge sharing

CERN-RD50 – Chip design

<u>RD50-MPW1</u> (fab-out April 2018)

- 150 nm HV-CMOS LFoundry
- 600 and 1.1k Ω·cm wafers

3) Matrix of HV-CMOS pixels with

- 50 μ m x 50 μ m pixel size
- Analog + digital readout in sensing area of the pixel
- Continuous readout (FE-I3)
- 40 rows x 78 columns

RD50-MPW2 (fab-out January 2020)

- 150 nm HV-CMOS LFoundry
- 10, 100, 1.9k and 3k Ω·cm wafers
- Techniques to improve ILEAK and VBD
- 2) Matrix of HV-CMOS pixels with
 - 60 μm x 60 μm pixel size
 - Analog readout in sensing area of the pixel
 - Fast response rate
 - 8 rows x 8 columns

UNIVERSITY OF LIVERPOOL

RD50–MPW1 – DAQ and measurements

LIVERPOOL

RD50-MPW1 – Measurements and TCAD

I-V of test pixel

- Probe station with 50 μm x 50 μm sensor
- VBD ~55-60 V as expected from the design
- ILEAK ~µA order well before VBD (too high)

TCAD simulations

- Pixel geometry
 - − P-n spacing \rightarrow increase
 - Corners \rightarrow round shaped
- Edge of the chip
 - Requires guard rings
- Structures added by the foundry to prepare the design files for fabrication
 - Prevent or minimize their presence

New techniques developed and implemented in RD50-MPW2

RD50-MPW2 – Pixel matrix

LIVERSITY OF

RD50-MPW2 – Fast response rate

We are doing R&D of HV-CMOS sensors to achieve better radiation tolerance, smaller pixel sizes and improved time resolution.

We are very active in RD50. We lead the CMOS WP.

Thanks for listening.

Happy to answer your questions.

Back up slides

Commercial vendors (I)

GLOBALFOUNDRIES

The Global Specialty Foundry Leader

Commercial vendors (II)

Foundry → Parameter ↓		TOURERS	TSI SEMICONDUCTORS
Feature node	150 nm	180 nm	180 nm
HV	Yes	No	Yes
HR	Yes	Yes	Yes
Quadruple well	Yes	Yes	No (triple)
Metal layers	6	6	6
Backside processing	Yes	Yes	No
Stitching	Yes	Yes	Yes
TSV	No	No	-

Large vs small fill-factor

Sensor cross-section \rightarrow Parameter \checkmark	charge signal CMOS electronics p+ pw nw p+ deep nwell p - substrate	charge signal CMOS electronics n ⁺ pw nw n ⁺ deep pwell p - substrate	
Name	Large fill-factor (HV/HR-CMOS)	Small fill-factor (HR-CMOS)	
1) p/n junction	p-substrate/large deep n-well	p-substrate/small shallow n-well	
2) Substrate biasing	High voltage	Low voltage	
3) Substrate resistivity	< 2-3 kΩ·cm	< 8 kΩ·cm	
1) + 2) + 3)	 No (little) low-field regions Shorter drift distances Higher radiation tolerance Larger sensor capacitance Larger noise & speed/power penalties RO in charge collection well 	 Low-field regions Longer drift distances Lower radiation tolerance Very small sensor capacitance Reduced noise & power RO outside charge collection well 	
Process	AMS/TSI and LFoundry	TowerJazz	

- What for?
 - To evaluate the costs/risks/benefits of using depleted monolithic CMOS detectors as a replacement of the baseline choice of hybrid pixel detectors in L4 of the ITk pixel barrel
 - Replacement = CMOS modules to be "plug-compatible" with hybrid modules
- Who? → Several ATLAS Upgrade coordinators and leaders
- When? → Several meetings in 2018-19 (final decision announced March 2019)

Observations

- Excellent R&D being done in CMOS land
- Eliminates hybridization and can reduce production time of modules
- Very tight time constraints
 - "Plug-compatible" module of CMOS detectors available and tested only in 2021 (too risky, no time for plan B if CMOS doesn't work well enough)
- Not massive cost savings (with 70% yield, 6.5% savings relative to cost in TDR)
- Hybrid pixel detectors making significant progress
- Recommendation
 - Advantages are too modest to justify potentially impacting the Pixel Upgrade
 - Use hybrid modules in L4, as planned in the baseline

RD50-MPW1 – Sensor

- Large fill-factor pixel
- PSUB layer isolates NWELL from DNWELL
 - CMOS electronics in pixel area are possible
- Detector capacitance has 2 contributions
 - P-substrate/DNWELL
 - PSUB/DNWELL
- Total pixel capacitance (50 μm x 50 μm) ~250 fF
- Equivalent Noise Charge (ENC) ~100 120 e⁻

LIVERSITY OF

RD50-MPW1 – Readout electronics

Analog readout

- Sensor biasing circuit, CSA, RC-CR filters and CMOS comparator
- CSA with programmable discharging current
- CMOS comparator with global VTH and local 4-bit DAC for fine tuning

Digital readout

- Continuous readout (synchronous, triggerless, hit flag + priority encoding)
- Global 8-bit Gray encoded time-stamp (40 MHz)
- For each hit
- → Leading edge (LE): 8-bit DRAM memory
- → Trailing edge (TE): 8-bit DRAM memory
- → Address (ADDR): 6-bit ROM memory

19 December 2019 – Particle physics annual meeting

→ TOT = LE – TE

(off-chip)

RD50-MPW1 – Measured results

eTCT measurements to study sensor depletion region

 Samples irradiated at TRIGA reactor in Ljubljana to several different n-fluences ranging from 1E13 to 2E15 n_{eq}/cm²

o <u>Test structure</u>

- \rightarrow 3 x 3 pixels matrix without readout electronics
- ➔ Central pixel to read out
- ➔ Outer pixels connected together
- ➔ Pixel size is 50 μm x 50 μm

Depletion depth changes with irradiation + acceptor removal effects seen