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FASER Detector

• FASER is located 480 m downstream of the ATLAS Interaction Point (IP1).

• It is positioned along the Line Of Sight (LoS) and is shielded by various LHC
infrastructure and 100 m of rock and concrete.

• Physics analyses at FASER are based on the veto scintillators, the tracking
spectrometer, the preshower detector and the electromagnetic calorimeter.

Figure: FASER Detector Schematic and Coordinate System [1]
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LLPs at FASER

• Dark Matter is theorized to be composed of undiscovered particles and
forces, neutral under the Standard Model that make up a Dark Sector (DS).

• These Dark Sectors can couple to the SM only via specific interactions
called portals, leading to new mediator-particles that are weakly interacting.

Standard Model Dark Sector
Portal - Mediator

Vector - Dark Photon

Scalar - Dark Higgs

• Mediators can be produced in collider experiments and are usually long-lived
(LLP) – allowing them to be detected at FASER through their SM decays.

pp
Long Lived Particle (LLP) l+

l−

FASER

∼ 480 m
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Motivation for Tracking Studies

• Track Studies with the 2024 Data

• In 2024 FASER collected its largest dataset of 120 fb−1.
• This data was also collected under a new LHC configuration.
• The beam crossing angle at IP1 changed from -160 µrad to +160 µrad.
• Large Data + New Configuration made it imperative to understand the

differences in the track quality of the newly collected data.

• FASER also underwent a major software upgrades to its track reconstruction

• On account of the operating system Centos7 reaching its end of life
• Entire software stack was migrated to AlmaLinux9.
• Required major upgrades to the tracking software (Acts [2]).
• This necessitated a revalidation of the track reconstruction software.
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Track Studies with 2024 Data

• The changed crossing angle for 2024 was reflected in the track-y positions.
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(a) Track x-positions is consistent with the previous runs.
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(b) Track y -positions shows a shift in the positive y -direction.

Figure: Track Positions as measured by the first tracking station

• Other track parameters also showed some differences attributable to the
changes in the LHC optics but were otherwise consistent.
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Validation of Track Reconstruction

• Validation using the single track
dataset was already performed

• This study utilized the simulated Dark
Photon samples to evaluate the track
reconstruction efficiency for close-by
tracks.

• Efficiency = NEvents with≥2Tracks
NFiducial Events

• The efficiency was observed to be
consistent across updated (Alma9)
and the previous (Centos7)
reconstruction software versions for
small track separations.

Track Reconstruction Efficiency [longTracks>=2] 
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Figure: Efficiency of Track Reconstruction as a function of
separation between the two decay products at the final tracking

station.

7 / 20



Dark Photon Analysis 2022

• FASER performed a search for Dark
Photon in 2022 using 27 fb−1of data [3],
focusing on the electron channel.

• The major background was from neutrino
interactions in the timing scintillators.

• The large calorimeter energy requirement
of 500 GeV supressed this background.

pp
Dark Photon A’ e+

e−

FASER

∼ 480 m Figure: Dark Photon Analysis Selection Criteria

Figure: Dark Photon Signature in the FASER Detector [3]
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Preliminary Dark Higgs Analysis

• The seven fold increase in the data collected from 2022 (27 fb−1) to 2024
(190 fb−1) could enable sensitivity to heavier Dark Photons and Dark Higgs

• These have significant branching fractions in the muonic and pionic channels.
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Figure: Projected reach of the Dark Photons (left) and Dark Higgs (right) for various luminosities assuming a zero background
and 100% efficiency of the detector [4].
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Alternative Final States

• The 2022 analysis primarily focused on the e+e− final state.

• Alternative final states such as µ+µ− and π+π− are incompatible with the
2022-selection due to the high calorimeter energy requirement.
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Figure: Calorimeter energy deposition for different final states and neutrinos. Signal samples of different masses are chained.

• In general, muons and pions don’t deposit as much energy in the calorimeter
as electrons making them hard to distinguish from the neutrino background.
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Analysis with Modified Two Track Selection

• A trivial modification would be to relax the calorimeter energy requirements.

0.23 0.26 0.30 0.33 0.40
Mass of Dark Higgs [GeV]

0

1

2

3

4

5

Nu
m

be
r o

f E
ve

nt
s [

19
0 

ifb
]

0.
69

1.
21 1.
26

0.
77

0.
72

2.
03

1.
70

0.
77

0.
44

1.
33

2.
76

1.
97

0.
620.

79

2.
25

3.
35

2.
07

0.
44

-b
g 

[
0.

03
]

Coupling
3E-04
4E-04
5E-04
6E-04
7E-04

• The Dark Higgs sensitivity despite the loose selection is quite low, only one
mass point has > 3 events needed for a 95% exclusion with 0-background.

11 / 20



Analysis with a One Track Selection

• Such selections are being explored for the 2024 Dark Photon analysis.
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• Significantly raises the neutrino background (almost 10-fold) but also
increases the signal yield – necessitating further background rejection.
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Possible Background / PID using Preshower

• The preshower detector is composed of two layers of scintillating layers
interleaved with tungsten radiators and is located before the calorimeter.

• The difference in the showering of various final states in the preshower could
be a possible PID tool aiding in the background rejection.
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Figure: Preshower Detector
Schematic [1]

• While the Preshower Ratio does not definitively separate signal from
background, conjunction with other variables could improve this.
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Future Directions

• Dark Photon Analysis

• Contribute to background studies for the 2024 Dark Photon analysis.
• Perform the statistical analysis for exclusion limits.

• Non Electronic Final States

• Investigate other possible background discriminators – particularly
using track kinematics and other multivariate techniques.

• Explore other models with higher branching fractions into muons and
pions. Eg : Up-philic Scalar [5]

• FASER Operations

• Handling some of FASER’s MC Production for BSM signals.
• Contribute to monitoring and run manager shifts once on LTA.
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Thank You
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FASER’s Positioning

• FASER’s positioning puts it in a low background environment.

• The configuration of the LHC quadrupoles (Q1, Q2, Q3) control the beam
crossing angle at IP1 while also affecting the flux of particles that make it to
FASER.

(a) Location of the FASER Detector in the LHC
(b) Trajectory of the charged particles through the

quadrupoles
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Beam Crossing Angle and LoS at FASER

• A beam crossing angle of θ at IP1 shifts the position of the Line of Sight
(LoS) at FASER by a distance of d = 480m× tan(θ/2).
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Figure: The LoS at FASER as shifted by the half crossing angle at IP1. The detector itself was moved - 1.2 cm during
installation to partially account for the crossing angle in 2022.
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Track Momenta in 2024
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(a) Positively Charged Tracks
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(b) Negatively Charged Tracks

Figure: Track Momenta as measured by the first tracking station split by charge.

• Due to the changed optics in 2024, FASER saw a significant increase in the
number positively charged muons.
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