



## Year 1 HEP Presentation

Jak Woodford

Under the supervision of: Dr. Nikolaos Rompotis & Prof. Joost Vossebeld

A Study of the GPU Reconstruction Algorithm for the Mu3e Experiment



### The Mu3e Experiment

- □ Dedicated search for the **Charged Lepton Flavour Violating** (CLFV) decay of an anti-muon into two positrons and an electron:  $\mu^+ \rightarrow e^+e^+e^-$ .
- Decay is heavily suppressed within the Standard Model (SM) to unobservable rates.

$$\mathcal{B}_{\mu \to eee} \propto \left(\frac{\Delta m_{\nu}^2}{m_W^2}\right)^2 \Rightarrow \mathcal{B}_{\mu \to eee} < 10^{-54}$$

**Jak Woodford** 

- □ Observation of the decay is unequivocal evidence for new physics, otherwise exclude a  $\mathcal{B}_{\mu \to eee} > 10^{-16}$  at the 90% Confidence Level (CL).
- □ Improvement on current best  $\mu \rightarrow eee$  sensitivity limits by 4 orders of magnitude!







#### The Mu3e Experiment





Modified from [1] K. Arndt et al., "Technical Design of the Phase I Mu3e Experiment, Aug. 2021

- In order to separate signal events from background, excellent momentum, vertex, and timing resolution is required.
- Hit information is provided by the inner and outer pixel layers; precise timing information is provided by the Sci-Fi and tile detectors.

#### **Y1 HEP Presentation**

#### **Offline Track Reconstruction**





### **Offline Track Reconstruction**





## Signal Sample Study

UNIVERSITY OF LIVERPOOL

|                                                                   | Frames              |                       |                | Vertices              |                       |                |                             |
|-------------------------------------------------------------------|---------------------|-----------------------|----------------|-----------------------|-----------------------|----------------|-----------------------------|
|                                                                   | N <sub>Frames</sub> | $\epsilon_{step}$ [%] | $\epsilon$ [%] | N <sub>Vertices</sub> | $\epsilon_{step}$ [%] | $\epsilon$ [%] |                             |
| All                                                               | 79921               | -                     | -              | 26342                 | -                     | -              |                             |
| 3 tracks from true vertex                                         | 23082               | 28.88                 | 33.93          | 25945                 | 98.49                 | 38.14          |                             |
| Target region                                                     | 22804               | 98.8                  | 33.52          | 25619                 | 98.74                 | 37.66          |                             |
| Hit sequence number $< 3$                                         | 22496               | 98.65                 | 33.07          | 22630                 | 88.33                 | 33.27          |                             |
| Same mother ID                                                    | 22496               | 100                   | 33.07          | 22630                 | 100                   | 33.27          |                             |
| Unique event mother ID                                            | 22496               | 100                   | 33.07          | 22496                 | 99.41                 | 33.07          |                             |
| Prime track                                                       | 22253               | 98.92                 | 32.71          | 22253                 | 98.92                 | 32.71          |                             |
| Truth $e^+e^+e^-$                                                 | 22253               | 100                   | 32.71          | 22253                 | 100                   | 32.71          |                             |
| Unique track ID                                                   | 22253               | 100                   | 32.71          | 22253                 | 100                   | 32.71          |                             |
| 1 recurler                                                        | 21667               | 97.37                 | 31.85          | 21667                 | 97.37                 | 31.85          |                             |
| 2 recurlers                                                       | 19320               | 89.17                 | 28.4           | 19320                 | 89.17                 | 28.4           |                             |
| 3 recurlers                                                       | 11316               | 58.57                 | 16.63          | 11316                 | 58.57                 | 16.63          |                             |
| $\chi^2 < 15$                                                     | 10763               | 95.11                 | 15.82          | 10763                 | 95.11                 | 15.82          |                             |
| $p_{CMS} < 4 \text{ MeV}$                                         | 10326               | 95.94                 | 15.18          | 10326                 | 95.94                 | 15.18          | - Reconstruction-level cuts |
| $\mid m_{ee}^{low} < 5 \text{ or } m_{ee}^{low} > 10 \text{ MeV}$ | 10122               | 98.02                 | 14.88          | 10122                 | 98.02                 | 14.88          |                             |
| $103 < m_{rec} < 110 \text{ MeV}$                                 | 9782                | 96.64                 | 14.38          | 9782                  | 96.64                 | 14.38          |                             |
| Timing                                                            | 8803                | 90.00                 | 12.94          | 8803                  | 90.00                 | 12.94          |                             |

After the application of all cuts, a final signal efficiency of 12.9% is observed – consistent with Mu3e TDR [1] & [2].

[2] S. Hughes PhD Thesis, "Towards the search for Charged Lepton Flavour Violation with The Mu3e Experiment", Sep. 2023

#### **Online Track Reconstruction**

UNIVERSITY OF LIVERPOOL

The reconstruction of short tracks is performed on a GPU filter farm at Mu3e – each of the 12 GPUs on the filter farm reconstruct all tracks and apply a selection in the algorithm, searching for  $\mu^+ \rightarrow e^+e^+e^-$  signatures.

Important to observe how the GPU reconstruction performs in comparison to the offline reconstruction.



#### **Online Track Reconstruction**

Delving a bit further into the comparison, however...

|         | Reconstructed Truth-Matched Tracks | MC Tracks | Reconstruction Efficiency |
|---------|------------------------------------|-----------|---------------------------|
| Online  | 2187                               | 2255      | 96.98%                    |
| Offline | 1965                               | 2011      | 97.71%                    |

There is a discrepancy between the number of MC tracks online and offline – why?





UNIVERSITY OF LIVERPOOL





#### **Online Track Reconstruction**

After accounting for these "double hits", a more robust comparison can be made between the reconstruction algorithms.

|         | Including     | Double | Hits       | Excluding Double Hits |      |            |
|---------|---------------|--------|------------|-----------------------|------|------------|
|         | Reconstructed | MC     | Efficiency | Reconstructed         | MC   | Efficiency |
| Online  | 2187          | 2255   | 96.98%     | 1951                  | 2011 | 97.02%     |
| Offline | 1965          | 2011   | 97.71%     | 1965                  | 2011 | 97.71%     |





UNIVERSITY OF

LIVERPOO

Finally, how do some reconstructed properties of the tracks compare between the online and offline algorithms?

| Selection                                | N <sub>Tracks</sub> | $\epsilon_{ m reco}$ [%] | $\epsilon_{\rm step}$ [%] |
|------------------------------------------|---------------------|--------------------------|---------------------------|
| Initial Reconstructed Tracks             | 2241                | 99.38                    | _                         |
| $\chi^2 < 32$                            | 2213                | 98.14                    | 98.75                     |
| $zcpa_z < 55 \text{ or } zpca_{rt} < 22$ | 2187                | 96.98                    | 97.59                     |





UNIVERSITY OF LIVERPOOL

- □ The Mu3e experiment is a dedicated search for CLFV in the muon sector, aiming to improve on the current best  $\mu^+ \rightarrow e^+e^+e^-$  sensitivity limit by 4 orders of magnitude.
- □ The offline track reconstruction and vertex algorithms have been briefly explained, as well as a dedicated signal sample study yielding an overall signal efficiency of 12.9%.
- A fast and efficient online reconstruction algorithm is required to reject backgrounds and reduce the amount of data written to disk. The latter has been highlighted here and compared to the offline reconstruction performance.
- □ Future work will focus on a mix of hardware and software:
  - > Continue to perform quality control tests on chips for the outer pixel detector.
  - > Be part of an analysis team to measure the Michel spectrum using the two-layer detector setup.
  - Studies will be performed initially with MC, before analysing the beam data (beam data-taking stopped just last week!)

# Backup

## Signal & Backgrounds

LIVERSITY OF



a) Signal topology

$$m_{inv} = P_{eee} = \sum_{i} E_i = m_{\mu}$$

$$|\vec{p}_{tot}| = \left|\sum_{i} \vec{p}_{i}\right| = 0$$

b) **Irreducible** internal conversion backgrounds

- Energy carried away by neutrinos here!
- Excellent momentum resolution required.

#### c) Combinatorial backgrounds

e<sup>+</sup>

 Pileup of Michel decays and electrons from Bhabha scattering.

#### Mu3e Sensitivity





#### Jak Woodford

#### Track Distributions





#### Longitudinal Event Displays





#### **Cutflow Efficiencies**

UNIVERSITY OF LIVERPOOI



three recurlers